Suppr超能文献

利用脑桥延髓交界处自动测量和标准化脊髓横截面积。

Automatic measure and normalization of spinal cord cross-sectional area using the pontomedullary junction.

作者信息

Bédard Sandrine, Cohen-Adad Julien

机构信息

NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada.

Functional Neuroimaging Unit, Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), University of Montreal, Montreal, QC, Canada.

出版信息

Front Neuroimaging. 2022 Nov 2;1:1031253. doi: 10.3389/fnimg.2022.1031253. eCollection 2022.

Abstract

Spinal cord cross-sectional area (CSA) is a relevant biomarker to assess spinal cord atrophy in neurodegenerative diseases. However, the considerable inter-subject variability among healthy participants currently limits its usage. Previous studies explored factors contributing to the variability, yet the normalization models required manual intervention and used vertebral levels as a reference, which is an imprecise prediction of the spinal levels. In this study we implemented a method to measure CSA automatically from a spatial reference based on the central nervous system (the pontomedullary junction, PMJ), we investigated factors to explain variability, and developed normalization strategies on a large cohort ( = 804). Following automatic spinal cord segmentation, vertebral labeling and PMJ labeling, the spinal cord CSA was computed on T1w MRI scans from the UK Biobank database. The CSA was computed using two methods. For the first method, the CSA was computed at the level of the C2-C3 intervertebral disc. For the second method, the CSA was computed at 64 mm caudally from the PMJ, this distance corresponding to the average distance between the PMJ and the C2-C3 disc across all participants. The effect of various demographic and anatomical factors was explored, and a stepwise regression found significant predictors; the coefficients of the best fit model were used to normalize CSA. CSA measured at C2-C3 disc and using the PMJ differed significantly (paired -test, -value = 0.0002). The best normalization model included thalamus, brain volume, sex and the interaction between brain volume and sex. The coefficient of variation went down for PMJ CSA from 10.09 (without normalization) to 8.59%, a reduction of 14.85%. For CSA at C2-C3, it went down from 9.96 to 8.42%, a reduction of 15.13 %. This study introduces an end-to-end automatic pipeline to measure and normalize cord CSA from a neurological reference. This approach requires further validation to assess atrophy in longitudinal studies. The inter-subject variability of CSA can be partly accounted for by demographics and anatomical factors.

摘要

脊髓横截面积(CSA)是评估神经退行性疾病中脊髓萎缩的一个相关生物标志物。然而,目前健康参与者之间存在的显著个体差异限制了其应用。以往的研究探讨了导致这种差异的因素,但归一化模型需要人工干预且以椎体水平作为参考,而这对脊髓水平的预测并不精确。在本研究中,我们实施了一种基于中枢神经系统(脑桥延髓交界,PMJ)从空间参考自动测量CSA的方法,我们研究了解释差异的因素,并在一个大型队列(n = 804)上制定了归一化策略。在自动进行脊髓分割、椎体标记和PMJ标记后,从英国生物银行数据库的T1加权MRI扫描图像上计算脊髓CSA。CSA通过两种方法计算。对于第一种方法,在C2 - C3椎间盘水平计算CSA。对于第二种方法,在从PMJ向尾侧64毫米处计算CSA,这个距离对应于所有参与者中PMJ与C2 - C3椎间盘之间的平均距离。探索了各种人口统计学和解剖学因素的影响,并通过逐步回归发现了显著的预测因素;使用最佳拟合模型的系数对CSA进行归一化。在C2 - C3椎间盘处测量的CSA与使用PMJ测量的CSA有显著差异(配对t检验,p值 = 0.0002)。最佳归一化模型包括丘脑、脑容量、性别以及脑容量与性别的相互作用。PMJ CSA的变异系数从10.09(未归一化)降至8.59%,降低了14.85%。对于C2 - C3处的CSA,其从9.96降至8.42%,降低了15.13%。本研究引入了一种端到端的自动流程,用于从神经学参考测量和归一化脊髓CSA。这种方法需要进一步验证以评估纵向研究中的萎缩情况。CSA的个体间差异可部分由人口统计学和解剖学因素解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4429/10406309/83b34855af8f/fnimg-01-1031253-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验