Decroocq Méghane, Des Ligneris Morgane, Poquillon Titouan, Vincent Maxime, Aubert Manon, Jacquesson Timothée, Frindel Carole
Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, INSERM, CREATIS UMR 5220, Lyon, France.
Skull Base Multi-Disciplinary Unit, Neurological Hospital Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France.
Front Neuroimaging. 2022 Mar 29;1:838483. doi: 10.3389/fnimg.2022.838483. eCollection 2022.
Fiber tractography enables the reconstruction of white matter fibers in 3 dimensions using data collected by diffusion tensor imaging, thereby helping to understand functional neuroanatomy. In a pre-operative context, it provides essential information on the trajectory of fiber bundles of medical interest, such as cranial nerves. However, the optimization of tractography parameters is a time-consuming process and requires expert neuroanatomical knowledge, making the use of tractography difficult in clinical routine. Tractogram filtering is a method used to isolate the most relevant fibers. In this work, we propose to use filtering as a post-processing of tractography to avoid the manual optimization of tracking parameters and therefore making a step forward automation of tractography. To question the feasibility of automated tractography of cranial nerves, we perform an analysis of main cranial nerves on a series of patients with skull base tumors. A quantitative evaluation of the filtering performance of two state-of-the-art and a new entropy-based methods is carried out on the basis of reference tractograms produced by experts. Our approach proves to be more stable in the selection of the optimal filtering threshold and turns out to be interesting in terms of computational time complexity.
纤维束成像能够利用扩散张量成像收集的数据在三维空间中重建白质纤维,从而有助于理解功能性神经解剖结构。在术前情况下,它能提供有关医学关注的纤维束轨迹的重要信息,比如颅神经。然而,纤维束成像参数的优化是一个耗时的过程,并且需要专业的神经解剖学知识,这使得纤维束成像在临床常规应用中难以使用。纤维束图滤波是一种用于分离最相关纤维的方法。在这项工作中,我们提议将滤波用作纤维束成像的后处理,以避免手动优化追踪参数,从而朝着纤维束成像的自动化迈出一步。为了探究颅神经自动纤维束成像的可行性,我们对一系列患有颅底肿瘤的患者的主要颅神经进行了分析。基于专家生成的参考纤维束图,对两种最先进的方法以及一种新的基于熵的方法的滤波性能进行了定量评估。我们的方法在选择最佳滤波阈值方面被证明更加稳定,并且在计算时间复杂度方面也很有优势。