Sherbrooke Connectivity Imaging Laboratory (SCIL), Department of Computer Science, Université de Sherbrooke, 2500, boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada; Videos & Images Theory and Analytics Laboratory (VITAL), Department of Computer Science, Université de Sherbrooke, 2500, boul. de l'Université, Sherbrooke, Québec J1K 2R1, Canada.
Groupe d'Imagerie Neurofonctionnelle (GIN), Univ. Bordeaux, CNRS, CEA, IMN, UMR 5293, Bordeaux F-33000, France.
Med Image Anal. 2021 Aug;72:102126. doi: 10.1016/j.media.2021.102126. Epub 2021 Jun 7.
Current brain white matter fiber tracking techniques show a number of problems, including: generating large proportions of streamlines that do not accurately describe the underlying anatomy; extracting streamlines that are not supported by the underlying diffusion signal; and under-representing some fiber populations, among others. In this paper, we describe a novel autoencoder-based learning method to filter streamlines from diffusion MRI tractography, and hence, to obtain more reliable tractograms. Our method, dubbed FINTA (Filtering in Tractography using Autoencoders) uses raw, unlabeled tractograms to train the autoencoder, and to learn a robust representation of brain streamlines. Such an embedding is then used to filter undesired streamline samples using a nearest neighbor algorithm. Our experiments on both synthetic and in vivo human brain diffusion MRI tractography data obtain accuracy scores exceeding the 90% threshold on the test set. Results reveal that FINTA has a superior filtering performance compared to conventional, anatomy-based methods, and the RecoBundles state-of-the-art method. Additionally, we demonstrate that FINTA can be applied to partial tractograms without requiring changes to the framework. We also show that the proposed method generalizes well across different tracking methods and datasets, and shortens significantly the computation time for large (>1 M streamlines) tractograms. Together, this work brings forward a new deep learning framework in tractography based on autoencoders, which offers a flexible and powerful method for white matter filtering and bundling that could enhance tractometry and connectivity analyses.
当前的脑白质纤维追踪技术存在一些问题,包括:生成的流线很大比例上不能准确描述潜在的解剖结构;提取的流线不受潜在扩散信号支持;以及其他一些纤维群体代表性不足等。在本文中,我们描述了一种新颖的基于自动编码器的学习方法,用于从扩散 MRI 追踪中过滤流线,从而获得更可靠的追踪图。我们的方法称为 FINTA(使用自动编码器进行追踪中的过滤),使用原始的、未标记的追踪图来训练自动编码器,并学习大脑流线的稳健表示。然后,使用最近邻算法使用这种嵌入来过滤不需要的流线样本。我们在合成和体内人脑扩散 MRI 追踪数据上的实验在测试集上获得了超过 90%的准确率得分。结果表明,FINTA 与传统的基于解剖结构的方法和 RecoBundles 最新方法相比,具有更好的过滤性能。此外,我们证明 FINTA 可以应用于部分追踪图,而不需要对框架进行更改。我们还表明,该方法在不同的追踪方法和数据集上具有很好的泛化能力,并大大缩短了对大型(>1M 流线)追踪图的计算时间。总之,这项工作提出了一种基于自动编码器的追踪中的新的深度学习框架,为白质过滤和捆绑提供了一种灵活而强大的方法,从而可以增强追踪测量和连通性分析。