Suppr超能文献

非质子离子液体中的自组装纳米结构有助于在高压下进行电荷传输。

Self-Assembled Nanostructures in Aprotic Ionic Liquids Facilitate Charge Transport at Elevated Pressure.

作者信息

Yao Beibei, Paluch Marian, Paturej Jaroslaw, McLaughlin Shannon, McGrogan Anne, Swadzba-Kwasny Malgorzata, Shen Jie, Ruta Beatrice, Rosenthal Martin, Liu Jiliang, Kruk Danuta, Wojnarowska Zaneta

机构信息

Faculty of Science and Technology, Institute of Physics, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.

The QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen's University of Belfast, David Keir Building, Stranmillis Road, BT9 5AG Belfast, NI, U.K.

出版信息

ACS Appl Mater Interfaces. 2023 Aug 23;15(33):39417-39425. doi: 10.1021/acsami.3c08606. Epub 2023 Aug 9.

Abstract

Ionic liquids (ILs), revealing a tendency to form self-assembled nanostructures, have emerged as promising materials in various applications, especially in energy storage and conversion. Despite multiple reports discussing the effect of structural factors and external thermodynamic variables on ion organization in a liquid state, little is known about the charge-transport mechanism through the self-assembled nanostructures and how it changes at elevated pressure. To address these issues, we chose three amphiphilic ionic liquids containing the same tetra(alkyl)phosphonium cation and anions differing in size and shape, i.e., thiocyanate [SCN], dicyanamide [DCA], and tricyanomethanide [TCM]. From ambient pressure dielectric and mechanical experiments, we found that charge transport of all three examined ILs is viscosity-controlled at high temperatures. On the other hand, ion diffusion is much faster than structural dynamics in a nanostructured supercooled liquid (at < 210 ± 3 K), which constitutes the first example of conductivity independent from viscosity in neat aprotic ILs. High-pressure measurements and MD simulations reveal that the created nanostructures depend on the anion size and can be modified by compression. For small anions, increasing pressure shapes immobile alkyl chains into lamellar-type phases, leading to increased anisotropic diffusivity of anions through channels. Bulky anions drive the formation of interconnected phases with continuous 3D curvature, which render ion transport independent of pressure. This work offers insight into the design of high-density electrolytes with percolating conductive phases providing efficient ion flow.

摘要

离子液体(ILs)呈现出形成自组装纳米结构的趋势,已成为各种应用中颇具前景的材料,尤其是在能量存储和转换方面。尽管有多项报告讨论了结构因素和外部热力学变量对液态离子组织的影响,但对于通过自组装纳米结构的电荷传输机制以及在高压下其如何变化却知之甚少。为了解决这些问题,我们选择了三种两亲性离子液体,它们含有相同的四(烷基)鏻阳离子和大小及形状不同的阴离子,即硫氰酸盐[SCN]、双氰胺[DCA]和三氰甲烷化物[TCM]。通过常压介电和力学实验,我们发现所有三种被研究的离子液体在高温下的电荷传输受粘度控制。另一方面,在纳米结构的过冷液体中(在<210±3 K时),离子扩散比结构动力学快得多,这是纯非质子离子液体中电导率与粘度无关的首个例子。高压测量和分子动力学模拟表明,所形成的纳米结构取决于阴离子大小,并且可以通过压缩进行改性。对于小阴离子,增加压力会使不动的烷基链形成层状相,导致阴离子通过通道的各向异性扩散增加。体积较大的阴离子促使形成具有连续三维曲率的相互连接相,这使得离子传输与压力无关。这项工作为设计具有渗流导电相以提供高效离子流动的高密度电解质提供了见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b06/10450691/71f0213cdd17/am3c08606_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验