Suppr超能文献

研究多学科护理团队中短信的使用,以减少痴呆症养老院居民的可避免住院率:二次分析方案

Examining the Use of Text Messages Among Multidisciplinary Care Teams to Reduce Avoidable Hospitalization of Nursing Home Residents with Dementia: Protocol for a Secondary Analysis.

作者信息

Powell Kimberly R, Popescu Mihail, Lee Suhwon, Mehr David R, Alexander Gregory L

机构信息

Sinclair School of Nursing, University of Missouri, Columbia, MO, United States.

School of Medicine, University of Missouri, Columbia, MO, United States.

出版信息

JMIR Res Protoc. 2023 Aug 9;12:e50231. doi: 10.2196/50231.

Abstract

BACKGROUND

Reducing avoidable nursing home (NH)-to-hospital transfers of residents with Alzheimer disease or a related dementia (ADRD) has become a national priority due to the physical and emotional toll it places on residents and the high costs to Medicare and Medicaid. Technologies supporting the use of clinical text messages (TMs) could improve communication among health care team members and have considerable impact on reducing avoidable NH-to-hospital transfers. Although text messaging is a widely accepted mechanism of communication, clinical models of care using TMs are sparsely reported in the literature, especially in NHs. Protocols for assessing technologies that integrate TMs into care delivery models would be beneficial for end users of these systems. Without evidence to support clinical models of care using TMs, users are left to design their own methods and protocols for their use, which can create wide variability and potentially increase disparities in resident outcomes.

OBJECTIVE

Our aim is to describe the protocol of a study designed to understand how members of the multidisciplinary team communicate using TMs and how salient and timely communication can be used to avert poor outcomes for NH residents with ADRD, including hospitalization.

METHODS

This project is a secondary analysis of data collected from a Centers for Medicare & Medicaid Services (CMS)-funded demonstration project designed to reduce avoidable hospitalizations for long-stay NH residents. We will use two data sources: (1) TMs exchanged among the multidisciplinary team across the 7-year CMS study period (August 2013-September 2020) and (2) an adapted acute care transfer tool completed by advanced practice registered nurses to document retrospective details about NH-to-hospital transfers. The study is guided by an age-friendly model of care called the 4Ms (What Matters, Medications, Mentation, and Mobility) framework. We will use natural language processing, statistical methods, and social network analysis to generate a new ontology and to compare communication patterns found in TMs occurring around the time NH-to-hospital transfer decisions were made about residents with and without ADRD.

RESULTS

After accounting for inclusion and exclusion criteria, we will analyze over 30,000 TMs pertaining to over 3600 NH-to-hospital transfers. Development of the 4M ontology is in progress, and the 3-year project is expected to run until mid-2025.

CONCLUSIONS

To our knowledge, this project will be the first to explore the content of TMs exchanged among a multidisciplinary team of care providers as they make decisions about NH-to-hospital resident transfers. Understanding how the presence of evidence-based elements of high-quality care relate to avoidable hospitalizations among NH residents with ADRD will generate knowledge regarding the future scalability of behavioral interventions. Without this knowledge, NHs will continue to rely on ineffective and outdated communication methods that fail to account for evidence-based elements of age-friendly care.

INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/50231.

摘要

背景

减少患有阿尔茨海默病或相关痴呆症(ADRD)的养老院(NH)居民不必要的转院已成为一项国家优先事项,因为这会给居民带来身体和情感上的伤害,同时给医疗保险和医疗补助计划带来高昂成本。支持使用临床短信(TM)的技术可以改善医疗团队成员之间的沟通,并对减少不必要的NH到医院的转院产生重大影响。尽管短信是一种广泛接受的沟通方式,但在文献中,尤其是在NH中,很少报道使用TM的临床护理模式。评估将TM整合到护理模式中的技术的协议将对这些系统的最终用户有益。由于缺乏支持使用TM的临床护理模式的证据,用户只能自行设计使用方法和协议,这可能会导致很大差异,并可能增加居民治疗结果的差异。

目的

我们的目的是描述一项研究的方案,该研究旨在了解多学科团队成员如何使用TM进行沟通,以及如何利用显著且及时的沟通来避免患有ADRD的NH居民出现不良后果,包括住院治疗。

方法

该项目是对从医疗保险和医疗补助服务中心(CMS)资助的示范项目收集的数据进行二次分析,该项目旨在减少长期居住在NH的居民不必要的住院治疗。我们将使用两个数据源:(1)在为期7年的CMS研究期间(2013年8月至2020年9月)多学科团队之间交换的TM,以及(2)由高级执业注册护士完成的经过改编的急性护理转院工具,以记录有关NH到医院转院的回顾性详细信息。该研究以一种名为4M(重要事项、药物治疗、精神状态和活动能力)框架的关爱老年人护理模式为指导。我们将使用自然语言处理、统计方法和社会网络分析来生成一个新的本体,并比较在对患有和未患有ADRD的居民做出NH到医院转院决定时周围发生的TM中发现的沟通模式。

结果

在考虑纳入和排除标准后,我们将分析与3600多次NH到医院转院相关的30000多条TM。4M本体的开发正在进行中,这个为期3年的项目预计将持续到2025年年中。

结论

据我们所知,该项目将首次探索护理提供者多学科团队在做出NH到医院居民转院决定时交换的TM的内容。了解高质量护理的循证要素的存在与患有ADRD的NH居民中可避免的住院治疗之间的关系,将产生有关行为干预未来可扩展性的知识。没有这些知识,NH将继续依赖无效和过时的沟通方法,这些方法没有考虑到关爱老年人护理的循证要素。

国际注册报告识别码(IRRID):DERR1-10.2196/50231。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验