IEEE Trans Haptics. 2023 Jul-Sep;16(3):424-435. doi: 10.1109/TOH.2023.3303838. Epub 2023 Sep 19.
A goal of wearable haptic devices has been to enable haptic communication, where individuals learn to map information typically processed visually or aurally to haptic cues via a process of cross-modal associative learning. Neural correlates have been used to evaluate haptic perception and may provide a more objective approach to assess association performance than more commonly used behavioral measures of performance. In this article, we examine Representational Similarity Analysis (RSA) of electroencephalography (EEG) as a framework to evaluate how the neural representation of multifeatured haptic cues changes with association training. We focus on the first phase of cross-modal associative learning, perception of multimodal cues. A participant learned to map phonemes to multimodal haptic cues, and EEG data were acquired before and after training to create neural representational spaces that were compared to theoretical models. Our perceptual model showed better correlations to the neural representational space before training, while the feature-based model showed better correlations with the post-training data. These results suggest that training may lead to a sharpening of the sensory response to haptic cues. Our results show promise that an EEG-RSA approach can capture a shift in the representational space of cues, as a means to track haptic learning.
可穿戴触觉设备的目标之一是实现触觉通信,即个体通过跨模态联想学习的过程,将通常通过视觉或听觉处理的信息映射到触觉线索上。神经相关性已被用于评估触觉感知,并且可能比更常用的行为表现评估方法提供更客观的方法来评估关联性能。在本文中,我们研究了脑电图 (EEG) 的表示相似性分析 (RSA),作为评估多特征触觉线索的神经表示如何随联想训练而变化的框架。我们专注于跨模态联想学习的第一阶段,即多模态线索的感知。参与者学习将音素映射到多模态触觉线索上,并在训练前后采集 EEG 数据,以创建神经表示空间,并将其与理论模型进行比较。我们的感知模型在训练前与神经表示空间的相关性更好,而基于特征的模型在训练后数据的相关性更好。这些结果表明,训练可能导致对触觉线索的感官反应更加敏锐。我们的结果表明,EEG-RSA 方法可以捕捉到线索表示空间的变化,作为跟踪触觉学习的一种手段。