Suppr超能文献

用于高性能锂硫电池的由二硫化钼改性的异质结构凝胶聚合物电解质

A Heterostructured Gel Polymer Electrolyte Modified by MoS for High-Performance Lithium-Sulfur Batteries.

作者信息

Chi Ziyun, Ding Jianlong, Ding Chao, Cui Bowen, Wang Wenqiang, Wang Gengchao

机构信息

Shanghai Engineering Research Center of Hierarchical Nanomaterials, Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.

出版信息

ACS Appl Mater Interfaces. 2023 Aug 23;15(33):39342-39350. doi: 10.1021/acsami.3c07321. Epub 2023 Aug 9.

Abstract

In Li-S batteries, the shuttle effect of polysulfide lithium (LiPS) on the cathode side and the growth of lithium dendrites on the anode side are two major problems that lead to an insufficient cycle life. Herein, in light of the challenges brought on by the different chemical environments on both sides of Li-S batteries, a heterostructured poly(ethyl acrylate--ionic liquid) gel electrolyte with a single-sided electrocatalytic reduced graphene oxide/MoS coating (MoS@rGO-GPE) was developed in order to assemble a high-performance Li-S battery with a self-supporting graphene sulfur cathode. In such a device architecture, there is multiposition suppression of the shuttle effect; that is, the confinement of the graphene foam, the catalysis of the MoS composite, and the capture of the gel polymer electrolyte. Our results show that the ionic conductivity of the heterostructured electrolyte is 1.98 mS cm, and the Li ion transference number reaches 0.81. The assembled lithium-sulfur battery displays a high initial discharge capacity of 1027 mAh g at 0.1 C, superior cycle stability (80% capacity retention after 500 cycles), and excellent rate performance. This design strategy provides a valuable route for the development of high-performance lithium-sulfur batteries.

摘要

在锂硫电池中,多硫化锂(LiPS)在阴极侧的穿梭效应以及锂枝晶在阳极侧的生长是导致循环寿命不足的两个主要问题。在此,鉴于锂硫电池两侧不同化学环境带来的挑战,开发了一种具有单面电催化还原氧化石墨烯/MoS涂层的异质结构聚(丙烯酸乙酯 - 离子液体)凝胶电解质(MoS@rGO - GPE),以组装具有自支撑石墨烯硫阴极的高性能锂硫电池。在这种器件结构中,对穿梭效应存在多位置抑制;即,石墨烯泡沫的限制、MoS复合材料的催化以及凝胶聚合物电解质的捕获。我们的结果表明,异质结构电解质的离子电导率为1.98 mS cm,锂离子迁移数达到0.81。组装的锂硫电池在0.1 C下显示出1027 mAh g的高初始放电容量、优异的循环稳定性(500次循环后容量保持率为80%)和出色的倍率性能。这种设计策略为高性能锂硫电池的开发提供了一条有价值的途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验