Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
Department of Computer Science, Stanford University, Palo Alto, CA 94305, USA.
Dev Cell. 2023 Oct 9;58(19):1898-1916.e9. doi: 10.1016/j.devcel.2023.07.007. Epub 2023 Aug 8.
Chromatin accessibility is integral to the process by which transcription factors (TFs) read out cis-regulatory DNA sequences, but it is difficult to differentiate between TFs that drive accessibility and those that do not. Deep learning models that learn complex sequence rules provide an unprecedented opportunity to dissect this problem. Using zygotic genome activation in Drosophila as a model, we analyzed high-resolution TF binding and chromatin accessibility data with interpretable deep learning and performed genetic validation experiments. We identify a hierarchical relationship between the pioneer TF Zelda and the TFs involved in axis patterning. Zelda consistently pioneers chromatin accessibility proportional to motif affinity, whereas patterning TFs augment chromatin accessibility in sequence contexts where they mediate enhancer activation. We conclude that chromatin accessibility occurs in two tiers: one through pioneering, which makes enhancers accessible but not necessarily active, and the second when the correct combination of TFs leads to enhancer activation.
染色质可及性是转录因子 (TFs) 读取顺式调控 DNA 序列的过程中的一个重要组成部分,但很难区分哪些 TFs 驱动了可及性,哪些 TFs 没有。学习复杂序列规则的深度学习模型为解决这个问题提供了前所未有的机会。我们以果蝇的合子基因组激活 (zygotic genome activation) 为模型,使用可解释的深度学习分析了高分辨率的 TF 结合和染色质可及性数据,并进行了遗传验证实验。我们发现先驱 TF Zelda 和参与轴模式形成的 TFs 之间存在一种层次关系。Zelda 一致地优先打开与基序亲和力成比例的染色质可及性,而模式形成 TFs 在它们介导增强子激活的序列环境中增加染色质可及性。我们得出结论,染色质可及性发生在两个层次上:一个是通过先驱性,使增强子变得可及,但不一定活跃;第二个是当正确的 TF 组合导致增强子激活时。