Suppr超能文献

蛋白质固有特性和上下文相关效应调节先驱因子的结合和功能。

Protein-intrinsic properties and context-dependent effects regulate pioneer factor binding and function.

机构信息

Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.

出版信息

Nat Struct Mol Biol. 2024 Mar;31(3):548-558. doi: 10.1038/s41594-024-01231-8. Epub 2024 Feb 16.

Abstract

Chromatin is a barrier to the binding of many transcription factors. By contrast, pioneer factors access nucleosomal targets and promote chromatin opening. Despite binding to target motifs in closed chromatin, many pioneer factors display cell-type-specific binding and activity. The mechanisms governing pioneer factor occupancy and the relationship between chromatin occupancy and opening remain unclear. We studied three Drosophila transcription factors with distinct DNA-binding domains and biological functions: Zelda, Grainy head and Twist. We demonstrated that the level of chromatin occupancy is a key determinant of pioneering activity. Multiple factors regulate occupancy, including motif content, local chromatin and protein concentration. Regions outside the DNA-binding domain are required for binding and chromatin opening. Our results show that pioneering activity is not a binary feature intrinsic to a protein but occurs on a spectrum and is regulated by a variety of protein-intrinsic and cell-type-specific features.

摘要

染色质是许多转录因子结合的障碍。相比之下,先驱因子可接近核小体靶标并促进染色质开放。尽管许多先驱因子结合于封闭染色质中的靶基序,但它们显示出细胞类型特异性的结合和活性。调控先驱因子占据的机制以及染色质占据与开放之间的关系尚不清楚。我们研究了三个具有不同 DNA 结合域和生物学功能的 Drosophila 转录因子:Zelda、Grainy head 和 Twist。我们证明了染色质占据的水平是先驱活性的关键决定因素。多个因素调节占据,包括基序内容、局部染色质和蛋白质浓度。DNA 结合域之外的区域对于结合和染色质开放是必需的。我们的结果表明,先驱活性不是蛋白质固有的二元特征,而是在一个谱上发生,并受到各种蛋白质内在和细胞类型特异性特征的调节。

相似文献

1
Protein-intrinsic properties and context-dependent effects regulate pioneer factor binding and function.
Nat Struct Mol Biol. 2024 Mar;31(3):548-558. doi: 10.1038/s41594-024-01231-8. Epub 2024 Feb 16.
2
Protein-intrinsic properties and context-dependent effects regulate pioneer-factor binding and function.
bioRxiv. 2023 Apr 3:2023.03.18.533281. doi: 10.1101/2023.03.18.533281.
6
Exploring the reciprocity between pioneer factors and development.
Development. 2024 Jul 1;151(13). doi: 10.1242/dev.201921. Epub 2024 Jul 3.
8
Pioneer transcription factors in cell reprogramming.
Genes Dev. 2014 Dec 15;28(24):2679-92. doi: 10.1101/gad.253443.114.
9
Structures and consequences of pioneer factor binding to nucleosomes.
Curr Opin Struct Biol. 2022 Aug;75:102425. doi: 10.1016/j.sbi.2022.102425. Epub 2022 Jul 18.
10
The mechanistic basis for chromatin regulation by pioneer transcription factors.
Wiley Interdiscip Rev Syst Biol Med. 2019 Jan;11(1):e1427. doi: 10.1002/wsbm.1427. Epub 2018 Jun 27.

引用本文的文献

1
DNA bendability regulates transcription factor binding to nucleosomes.
Nat Struct Mol Biol. 2025 Aug 25. doi: 10.1038/s41594-025-01633-2.
2
Transcriptional regulation as a dose-dependent process: insights from transcription factor tuning.
Open Biol. 2025 Aug;15(8):240328. doi: 10.1098/rsob.240328. Epub 2025 Aug 6.
3
Bulk-level maps of pioneer factor binding dynamics during the Drosophila maternal-to-zygotic transition.
Development. 2025 Jul 1;152(13). doi: 10.1242/dev.204460. Epub 2025 Jul 3.
5
Catalytic-dependent and independent functions of the histone acetyltransferase CBP promote pioneer-factor-mediated zygotic genome activation.
Mol Cell. 2025 Jun 19;85(12):2409-2424.e8. doi: 10.1016/j.molcel.2025.05.009. Epub 2025 May 28.
6
Structural insights into the recognition of native nucleosomes by pioneer transcription factors.
Curr Opin Struct Biol. 2025 Jun;92:103024. doi: 10.1016/j.sbi.2025.103024. Epub 2025 Mar 1.
8
The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus.
Nat Rev Genet. 2025 Apr;26(4):245-267. doi: 10.1038/s41576-024-00792-0. Epub 2024 Nov 25.
9
DNA flexibility regulates transcription factor binding to nucleosomes.
bioRxiv. 2024 Sep 2:2024.09.02.610559. doi: 10.1101/2024.09.02.610559.
10
Elevated GRHL2 Imparts Plasticity in ER-Positive Breast Cancer Cells.
Cancers (Basel). 2024 Aug 21;16(16):2906. doi: 10.3390/cancers16162906.

本文引用的文献

1
DNA-guided transcription factor cooperativity shapes face and limb mesenchyme.
Cell. 2024 Feb 1;187(3):692-711.e26. doi: 10.1016/j.cell.2023.12.032. Epub 2024 Jan 22.
2
Pioneer activity distinguishes activating from non-activating SOX2 binding sites.
EMBO J. 2023 Oct 16;42(20):e113150. doi: 10.15252/embj.2022113150. Epub 2023 Sep 11.
3
Chromatin accessibility in the Drosophila embryo is determined by transcription factor pioneering and enhancer activation.
Dev Cell. 2023 Oct 9;58(19):1898-1916.e9. doi: 10.1016/j.devcel.2023.07.007. Epub 2023 Aug 8.
4
Different chromatin-scanning modes lead to targeting of compacted chromatin by pioneer factors FOXA1 and SOX2.
Cell Rep. 2023 Jul 25;42(7):112748. doi: 10.1016/j.celrep.2023.112748. Epub 2023 Jul 4.
5
Zygotic genome activation by the totipotency pioneer factor Nr5a2.
Science. 2022 Dec 23;378(6626):1305-1315. doi: 10.1126/science.abn7478. Epub 2022 Nov 24.
6
"Structure"-function relationships in eukaryotic transcription factors: The role of intrinsically disordered regions in gene regulation.
Mol Cell. 2022 Nov 3;82(21):3970-3984. doi: 10.1016/j.molcel.2022.09.021. Epub 2022 Oct 19.
8
Transcription factors perform a 2-step search of the nucleus.
Genetics. 2022 Sep 30;222(2). doi: 10.1093/genetics/iyac111.
9
Kinetic principles underlying pioneer function of GAGA transcription factor in live cells.
Nat Struct Mol Biol. 2022 Jul;29(7):665-676. doi: 10.1038/s41594-022-00800-z. Epub 2022 Jul 14.
10
Sox2 levels regulate the chromatin occupancy of WNT mediators in epiblast progenitors responsible for vertebrate body formation.
Nat Cell Biol. 2022 May;24(5):633-644. doi: 10.1038/s41556-022-00910-2. Epub 2022 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验