Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK.
Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
Biol Rev Camb Philos Soc. 2023 Dec;98(6):2243-2270. doi: 10.1111/brv.13004. Epub 2023 Aug 9.
In an epoch of rapid environmental change, understanding and predicting how biodiversity will respond to a changing climate is an urgent challenge. Since we seldom have sufficient long-term biological data to use the past to anticipate the future, spatial climate-biotic relationships are often used as a proxy for predicting biotic responses to climate change over time. These 'space-for-time substitutions' (SFTS) have become near ubiquitous in global change biology, but with different subfields largely developing methods in isolation. We review how climate-focussed SFTS are used in four subfields of ecology and evolution, each focussed on a different type of biotic variable - population phenotypes, population genotypes, species' distributions, and ecological communities. We then examine the similarities and differences between subfields in terms of methods, limitations and opportunities. While SFTS are used for a wide range of applications, two main approaches are applied across the four subfields: spatial in situ gradient methods and transplant experiments. We find that SFTS methods share common limitations relating to (i) the causality of identified spatial climate-biotic relationships and (ii) the transferability of these relationships, i.e. whether climate-biotic relationships observed over space are equivalent to those occurring over time. Moreover, despite widespread application of SFTS in climate change research, key assumptions remain largely untested. We highlight opportunities to enhance the robustness of SFTS by addressing key assumptions and limitations, with a particular emphasis on where approaches could be shared between the four subfields.
在环境快速变化的时代,了解和预测生物多样性如何应对气候变化是一个紧迫的挑战。由于我们很少有足够的长期生物数据来利用过去预测未来,因此通常将空间气候生物关系用作预测生物随时间对气候变化反应的替代物。这些“时空替代”(SFTS)在全球变化生物学中已变得非常普遍,但不同的子领域在很大程度上是孤立地开发方法。我们回顾了在生态学和进化的四个子领域中如何使用以气候为重点的 SFTS,每个子领域都侧重于不同类型的生物变量 - 种群表型、种群基因型、物种分布和生态群落。然后,我们根据方法、局限性和机会来检查子领域之间的相似之处和不同之处。虽然 SFTS 可用于广泛的应用,但在这四个子领域中应用了两种主要方法:空间原位梯度方法和移植实验。我们发现 SFTS 方法存在一些共同的局限性,涉及到(i)确定的空间气候生物关系的因果关系,以及(ii)这些关系的可转移性,即观察到的空间气候生物关系是否与随时间发生的关系等效。此外,尽管 SFTS 在气候变化研究中得到了广泛应用,但关键假设在很大程度上仍未得到检验。我们强调通过解决关键假设和局限性来提高 SFTS 的稳健性的机会,特别强调在四个子领域之间可以共享哪些方法。