Suppr超能文献

将能量不稳定性与生物群落的组成变化联系起来。

Linking energetic instability to compositional changes in biological communities.

作者信息

Kadoya Taku, Suzuki Kenta, Terui Akira

机构信息

Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan.

Integrated Bioresource Information Division, BioResource Research Center, RIKEN, Tsukuba, Ibaraki 305-0074, Japan.

出版信息

Proc Natl Acad Sci U S A. 2025 Apr 29;122(17):e2422701122. doi: 10.1073/pnas.2422701122. Epub 2025 Apr 21.

Abstract

The resilience of an ecological community informs us how it will respond to future environmental disturbances. However, the concept is rarely tested in the context of predicting biodiversity change, particularly at broad spatial and taxonomic scales. Here, we show that measures of instability derived from the resilience of the current state of community compositions greatly improve the predictability of biodiversity change. We applied energy landscape analysis (ELA) to community compositions of both simulated and natural ecosystems of distinctive regions and taxa (birds, fishes, mollusks, and phytoplankton) and estimated the resilience of those systems. We found that a metric of local instability, which represents how current community states are inflated from local optima, explained well the magnitude of species turnover and energy changes from the current to future states for both simulated and real communities. A metric of global instability, which represents a community's tendency to cross-over ridges of local basins of attraction to alternate stable states, also served as a weaker yet significant index of such changes. Our ELA results suggest that quantifying the resilience of real ecosystems is essential for understanding the mechanisms of community dynamics in an effort to improve the prediction of biodiversity change.

摘要

生态群落的恢复力能让我们了解它将如何应对未来的环境干扰。然而,这一概念在预测生物多样性变化的背景下很少得到验证,尤其是在广泛的空间和分类尺度上。在此,我们表明,从群落组成现状的恢复力得出的不稳定性度量极大地提高了生物多样性变化的可预测性。我们将能量景观分析(ELA)应用于不同区域和分类群(鸟类、鱼类、软体动物和浮游植物)的模拟和自然生态系统的群落组成,并估算了这些系统的恢复力。我们发现,局部不稳定性指标(代表当前群落状态相对于局部最优状态的偏离程度)能够很好地解释模拟群落和真实群落中物种更替的幅度以及从当前状态到未来状态的能量变化。全局不稳定性指标(代表群落跨越局部吸引盆的山脊进入交替稳定状态的趋势)也可作为此类变化的一个较弱但显著的指标。我们的能量景观分析结果表明,量化真实生态系统的恢复力对于理解群落动态机制从而改进生物多样性变化预测至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9eef/12054833/57dcc20d1bf0/pnas.2422701122fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验