Department of Traditional Chinese Medicine, Jing'an District Central Hospital Affiliated to Fudan University, Shanghai, 200040, China.
Department of Neurology, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, 230031, Anhui Province, China.
Curr Comput Aided Drug Des. 2024;20(6):888-910. doi: 10.2174/1573409920666230808120504.
To decipher the underlying mechanisms of Sanleng-Ezhu for the treatment of idiopathic pulmonary fibrosis based on network pharmacology and single-cell RNA sequencing data.
Idiopathic Pulmonary Fibrosis (IPF) is the most common type of interstitial lung disease. Although the combination of herbs Sanleng (SL) and Ezhu (EZ) has shown reliable efficacy in the management of IPF, its underlying mechanisms remain unknown.
Based on LC-MS/MS analysis and the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database, we identified the bioactive components of SL-EZ. After obtaining the IPF-related dataset GSE53845 from the Gene Expression Omnibus (GEO) database, we performed the differential expression analysis and the weighted gene co-expression network analysis (WGCNA), respectively. We obtained lowly and highly expressed IPF subtype gene sets by comparing Differentially Expressed Genes (DEGs) with the most significantly negatively and positively related IPF modules in WGCNA. Subsequently, we performed Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses on IPF subtype gene sets. The low- and highexpression MCODE subgroup feature genes were identified by the MCODE plug-in and were adopted for Disease Ontology (DO), GO, and KEGG enrichment analyses. Next, we performed the immune cell infiltration analysis of the MCODE subgroup feature genes. Single-cell RNA sequencing analysis demonstrated the cell types which expressed different MCODE subgroup feature genes. Molecular docking and animal experiments validated the effectiveness of SL-EZ in delaying the progression of pulmonary fibrosis.
We obtained 5 bioactive components of SL-EZ as well as their corresponding 66 candidate targets. After normalizing the samples of the GSE53845 dataset from the GEO database source, we obtained 1907 DEGs of IPF. Next, we performed a WGCNA analysis on the dataset and got 11 modules. Notably, we obtained 2 IPF subgroups by contrasting the most significantly up- and down-regulated modular genes in IPF with DEGs, respectively. The different IPF subgroups were compared with drugcandidate targets to obtain direct targets of action. After constructing the protein interaction networks between IPF subgroup genes and drug candidate targets, we applied the MCODE plug-in to filter the highest-scoring MCODE components. DO, GO, and KEGG enrichment analyses were applied to drug targets, IPF subgroup genes, and MCODE component signature genes. In addition, we downloaded the single-cell dataset GSE157376 from the GEO database. By performing quality control and dimensionality reduction, we clustered the scattered primary sample cells into 11 clusters and annotated them into 2 cell subtypes. Drug sensitivity analysis suggested that SL-EZ acts on different cell subtypes in IPF subgroups. Molecular docking revealed the mode of interaction between targets and their corresponding components. Animal experiments confirmed the efficacy of SL-EZ.
We found SL-EZ acted on epithelial cells mainly through the calcium signaling pathway in the lowly-expressed IPF subtype, while in the highly-expressed IPF subtype, SL-EZ acted on smooth muscle cells mainly through the viral infection, apoptosis, and p53 signaling pathway.
基于网络药理学和单细胞 RNA 测序数据,破译三楞莪术治疗特发性肺纤维化的潜在机制。
特发性肺纤维化(IPF)是最常见的间质性肺疾病。尽管三楞(SL)和莪术(EZ)的组合在管理 IPF 方面显示出可靠的疗效,但其潜在机制仍不清楚。
基于 LC-MS/MS 分析和中药系统药理学数据库和分析平台(TCMSP)数据库,我们确定了 SL-EZ 的生物活性成分。从基因表达综合数据库(GEO)数据库中获得与特发性肺纤维化相关的数据集 GSE53845 后,我们分别进行差异表达分析和加权基因共表达网络分析(WGCNA)。通过比较差异表达基因(DEGs)与 WGCNA 中最显著负相关和正相关的特发性肺纤维化模块,我们获得了低表达和高表达的特发性肺纤维化亚型基因集。随后,我们对特发性肺纤维化亚型基因集进行基因本体论(GO)和京都基因与基因组百科全书(KEGG)富集分析。通过 MCODE 插件识别低表达和高表达 MCODE 亚组特征基因,并对其进行疾病本体论(DO)、GO 和 KEGG 富集分析。接下来,我们对 MCODE 亚组特征基因进行免疫细胞浸润分析。单细胞 RNA 测序分析表明了表达不同 MCODE 亚组特征基因的细胞类型。分子对接和动物实验验证了 SL-EZ 延缓肺纤维化进展的有效性。
我们获得了 5 种 SL-EZ 的生物活性成分及其相应的 66 种候选靶点。对 GEO 数据库来源的 GSE53845 数据集进行样本归一化后,我们获得了 1907 个 IPF 的差异表达基因。接下来,我们对数据集进行 WGCNA 分析,得到了 11 个模块。值得注意的是,我们通过比较 IPF 中最显著上调和下调的模块基因与 DEGs,分别获得了 2 个特发性肺纤维化亚组。将不同的特发性肺纤维化亚组与药物候选靶点进行比较,获得直接作用靶点。构建 IPF 亚组基因与药物候选靶点之间的蛋白质相互作用网络后,我们应用 MCODE 插件筛选出得分最高的 MCODE 组件。对药物靶点、特发性肺纤维化亚组基因和 MCODE 亚组特征基因进行 DO、GO 和 KEGG 富集分析。此外,我们从 GEO 数据库下载了单细胞数据集 GSE157376。通过进行质量控制和降维处理,我们将分散的原始样本细胞聚类为 11 个簇,并将其注释为 2 个细胞亚型。药物敏感性分析表明,SL-EZ 作用于特发性肺纤维化亚组中的不同细胞亚型。分子对接揭示了目标与其相应成分相互作用的模式。动物实验证实了 SL-EZ 的疗效。
我们发现 SL-EZ 主要通过钙信号通路作用于低表达特发性肺纤维化亚型中的上皮细胞,而在高表达特发性肺纤维化亚型中,SL-EZ 主要通过病毒感染、细胞凋亡和 p53 信号通路作用于平滑肌细胞。