Suppr超能文献

通过与单细胞表达参考数据相结合,对批量组织中的细胞类型表达进行反卷积分析。

Deconvolution analysis of cell-type expression from bulk tissues by integrating with single-cell expression reference.

机构信息

Department of Biostatistics, Bioinformatics, and Biomathematics, Georgetown University Medical Center, Washington, District of Columbia, USA.

Computational and Statistical Genomics Branch, National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Baltimore, Maryland, USA.

出版信息

Genet Epidemiol. 2022 Dec;46(8):615-628. doi: 10.1002/gepi.22494. Epub 2022 Jul 5.

Abstract

To understand phenotypic variations and key factors which affect disease susceptibility of complex traits, it is important to decipher cell-type tissue compositions. To study cellular compositions of bulk tissue samples, one can evaluate cellular abundances and cell-type-specific gene expression patterns from the tissue transcriptome profiles. We develop both fixed and mixed models to reconstruct cellular expression fractions for bulk-profiled samples by using reference single-cell (sc) RNA-sequencing (RNA-seq) reference data. In benchmark evaluations of estimating cellular expression fractions, the mixed-effect models provide similar results as an elegant machine learning algorithm named cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORTx), which is a well-known and reliable procedure to reconstruct cell-type abundances and cell-type-specific gene expression profiles. In real data analysis, the mixed-effect models outperform or perform similarly as CIBERSORTx. The mixed models perform better than the fixed models in both benchmark evaluations and data analysis. In simulation studies, we show that if the heterogeneity exists in scRNA-seq data, it is better to use mixed models with heterogeneous mean and variance-covariance. As a byproduct, the mixed models provide fractions of covariance between subject-specific gene expression and cell types to measure their correlations. The proposed mixed models provide a complementary tool to dissect bulk tissues using scRNA-seq data.

摘要

为了理解影响复杂性状疾病易感性的表型变异和关键因素,解析细胞类型组织组成至关重要。为了研究批量组织样本的细胞组成,可以从组织转录组谱中评估细胞丰度和细胞类型特异性基因表达模式。我们开发了固定和混合模型,通过使用参考单细胞 (sc) RNA 测序 (RNA-seq) 参考数据,为批量分析样本重建细胞表达分数。在估计细胞表达分数的基准评估中,混合效应模型提供的结果与一种名为通过估计相对 RNA 转录本子集进行细胞类型识别的优雅机器学习算法 (CIBERSORTx) 相似,CIBERSORTx 是一种重建细胞类型丰度和细胞类型特异性基因表达模式的知名且可靠的方法。在实际数据分析中,混合效应模型的表现优于或与 CIBERSORTx 相当。在基准评估和数据分析中,混合模型均优于固定模型。在模拟研究中,我们表明如果 scRNA-seq 数据中存在异质性,最好使用具有异质均值和方差协方差的混合模型。作为副产品,混合模型提供了特定于个体的基因表达与细胞类型之间的协方差分数,以衡量它们的相关性。所提出的混合模型提供了一种使用 scRNA-seq 数据剖析批量组织的补充工具。

相似文献

1
Deconvolution analysis of cell-type expression from bulk tissues by integrating with single-cell expression reference.
Genet Epidemiol. 2022 Dec;46(8):615-628. doi: 10.1002/gepi.22494. Epub 2022 Jul 5.
2
MuSiC2: cell-type deconvolution for multi-condition bulk RNA-seq data.
Brief Bioinform. 2022 Nov 19;23(6). doi: 10.1093/bib/bbac430.
3
Single cell transcriptomics in human osteoarthritis synovium and in silico deconvoluted bulk RNA sequencing.
Osteoarthritis Cartilage. 2022 Mar;30(3):475-480. doi: 10.1016/j.joca.2021.12.007. Epub 2021 Dec 29.
4
HArmonized single-cell RNA-seq Cell type Assisted Deconvolution (HASCAD).
BMC Med Genomics. 2023 Oct 31;16(Suppl 2):272. doi: 10.1186/s12920-023-01674-w.
5
Transcriptome size matters for single-cell RNA-seq normalization and bulk deconvolution.
Nat Commun. 2025 Feb 1;16(1):1246. doi: 10.1038/s41467-025-56623-1.
6
Semi-deconvolution of bulk and single-cell RNA-seq data with application to metastatic progression in breast cancer.
Bioinformatics. 2022 Jun 24;38(Suppl 1):i386-i394. doi: 10.1093/bioinformatics/btac262.
8
Assessing transcriptomic heterogeneity of single-cell RNASeq data by bulk-level gene expression data.
BMC Bioinformatics. 2024 Jun 12;25(1):209. doi: 10.1186/s12859-024-05825-3.
9
Detecting cell-type-specific allelic expression imbalance by integrative analysis of bulk and single-cell RNA sequencing data.
PLoS Genet. 2021 Mar 4;17(3):e1009080. doi: 10.1371/journal.pgen.1009080. eCollection 2021 Mar.
10
Single Cell Data Enables Dissecting Cell Types Present in Bulk Transcriptome Data.
Stem Cells Dev. 2025 Jan;34(1-2):17-25. doi: 10.1089/scd.2024.0152. Epub 2024 Nov 29.

引用本文的文献

2
Reply to M. Younes.
JCO Precis Oncol. 2023 Jun;7:e2300170. doi: 10.1200/PO.23.00170.

本文引用的文献

1
Bayesian log-normal deconvolution for enhanced in silico microdissection of bulk gene expression data.
Nat Commun. 2021 Oct 20;12(1):6106. doi: 10.1038/s41467-021-26328-2.
2
Profiling Cell Type Abundance and Expression in Bulk Tissues with CIBERSORTx.
Methods Mol Biol. 2020;2117:135-157. doi: 10.1007/978-1-0716-0301-7_7.
3
Determining cell type abundance and expression from bulk tissues with digital cytometry.
Nat Biotechnol. 2019 Jul;37(7):773-782. doi: 10.1038/s41587-019-0114-2. Epub 2019 May 6.
4
Cell composition analysis of bulk genomics using single-cell data.
Nat Methods. 2019 Apr;16(4):327-332. doi: 10.1038/s41592-019-0355-5. Epub 2019 Mar 18.
5
Bulk tissue cell type deconvolution with multi-subject single-cell expression reference.
Nat Commun. 2019 Jan 22;10(1):380. doi: 10.1038/s41467-018-08023-x.
6
Transcriptome Deconvolution of Heterogeneous Tumor Samples with Immune Infiltration.
iScience. 2018 Nov 30;9:451-460. doi: 10.1016/j.isci.2018.10.028. Epub 2018 Nov 2.
7
Computational deconvolution of transcriptomics data from mixed cell populations.
Bioinformatics. 2018 Jun 1;34(11):1969-1979. doi: 10.1093/bioinformatics/bty019.
8
Estimation of immune cell content in tumour tissue using single-cell RNA-seq data.
Nat Commun. 2017 Dec 11;8(1):2032. doi: 10.1038/s41467-017-02289-3.
9
Splatter: simulation of single-cell RNA sequencing data.
Genome Biol. 2017 Sep 12;18(1):174. doi: 10.1186/s13059-017-1305-0.
10
Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes.
Cell Metab. 2016 Oct 11;24(4):593-607. doi: 10.1016/j.cmet.2016.08.020. Epub 2016 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验