Guo Jiabin, He Bing, Gong Wenbin, Xu Shuhong, Xue Pan, Li Chunsheng, Sun Yan, Wang Chunlei, Wei Lei, Zhang Qichong, Li Qingwen
School of Electronic Science & Engineering, Southeast University, Nanjing, 210096, China.
Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
Adv Mater. 2024 Mar;36(11):e2303906. doi: 10.1002/adma.202303906. Epub 2023 Dec 24.
Amorphous transition metal oxides have attracted significant attention in energy storage devices owing to their potentially desirable electrochemical properties caused by abundant unsaturated dangling bonds. However, the amorphization further amplifies the shortcoming of the poor intrinsic electronic conductivity of the metal oxides, resulting in unsatisfying rate capability and power density. Herein, freestanding amorphous Ca-doped V O (a-Ca-V O ) cathodes are successfully prepared via in situ electrochemical oxidation of Ca-doped VO nanoarrays for wearable aqueous zinc-ion batteries. The doping of Ca and construction of freestanding structure effectively uncover the potential of amorphous V O , which can make full use of the abundant active sites for high volumetric capacity and simultaneously achieve fast reaction kinetics for excellent rate performance. More importantly, the introduction of Ca can notably reduce the formation energy of VO according to theoretical calculation results and realizes amorphous to crystalline reversible conversion chemistry in the charge/discharge procedure, thereby facilitating the reversible capacity of the newly developed a-Ca-V O . This work provides an innovative design strategy to construct high-rate capacity amorphous metal oxides as freestanding electrodes for low-cost and high-safe wearable energy-storage technology.
非晶态过渡金属氧化物因其丰富的不饱和悬空键所导致的潜在理想电化学性能,在储能器件中引起了广泛关注。然而,非晶化进一步放大了金属氧化物固有电子导电性差的缺点,导致倍率性能和功率密度不尽人意。在此,通过对钙掺杂VO纳米阵列进行原位电化学氧化,成功制备了用于可穿戴水系锌离子电池的独立式非晶态钙掺杂VO(a-Ca-VO)阴极。钙的掺杂和独立式结构的构建有效地挖掘了非晶态VO的潜力,使其能够充分利用丰富的活性位点实现高体积容量,同时实现快速反应动力学以获得优异的倍率性能。更重要的是,根据理论计算结果,钙的引入可以显著降低VO的形成能,并在充放电过程中实现非晶态到晶态的可逆转化化学,从而提高新开发的a-Ca-VO的可逆容量。这项工作提供了一种创新的设计策略,以构建高倍率容量的非晶态金属氧化物作为独立电极,用于低成本、高安全性的可穿戴储能技术。