Li Di, Cheng Hao, Hao Xixun, Yu Guoping, Qiu Chuntian, Xiao Yanjun, Huang Hubiao, Lu Yingying, Zhang Bing
State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China.
Adv Mater. 2024 Jan;36(4):e2304917. doi: 10.1002/adma.202304917. Epub 2023 Dec 3.
The sustainable and scalable fabrication of low-cost, efficient, and durable electrocatalysts that operate well at industrial-level current density is urgently needed for large-scale implementation of the water splitting to produce hydrogen. In this work, an integrated carbon electrode is constructed by encapsulating Ni nanoparticles within N-doped carbonized wood framework (Ni@NCW). Such integrated electrode with hierarchically porous structure facilitates mass transfer process for hydrogen evolution reaction (HER). Ni@NCW electrode can be employed directly as a robust electrocatalyst for HER, which affords the industrial-level current density of 1000 mA cm at low overpotential of 401 mV. The freestanding binder-free electrode exhibits extraordinary stability for 100 h. An anion exchange membrane water electrolysis (AEMWE) electrolyzer assembled with such freestanding carbon electrode requires only a lower cell voltage of 2.43 V to achieve ampere-level current of 4.0 A for hydrogen production without significant performance degradation. These advantages reveal the great potential of this strategy in designing cost-effective freestanding electrode with monometallic, bimetallic, or trimetallic species based on abundant natural wood resources for water splitting.
为了大规模实施水分解制氢,迫切需要可持续且可扩展地制造出低成本、高效且耐用的电催化剂,这些电催化剂要能在工业级电流密度下良好运行。在这项工作中,通过将镍纳米颗粒封装在氮掺杂碳化木材框架(Ni@NCW)中来构建集成碳电极。这种具有分级多孔结构的集成电极有助于析氢反应(HER)的传质过程。Ni@NCW电极可直接用作HER的稳健电催化剂,在401 mV的低过电位下可提供1000 mA cm的工业级电流密度。这种独立无粘结剂电极表现出100小时的非凡稳定性。用这种独立碳电极组装的阴离子交换膜水电解槽(AEMWE)只需2.43 V的较低电池电压就能实现4.0 A的安培级电流用于制氢,且性能无明显下降。这些优点揭示了该策略在基于丰富天然木材资源设计具有单金属、双金属或三金属物种的经济高效独立电极用于水分解方面的巨大潜力。