Suppr超能文献

研究互动行为随时间变化的个体差异:一种二元多项逻辑增长建模方法。

Examining individual differences in how interaction behaviors change over time: A dyadic multinomial logistic growth modeling approach.

作者信息

Brinberg Miriam, Bodie Graham D, Solomon Denise H, Jones Susanne M, Ram Nilam

机构信息

School of Communication, Ohio State University.

Department of Media and Communication, School of Journalism and New Media, University of Mississippi.

出版信息

Psychol Methods. 2023 Aug 10. doi: 10.1037/met0000605.

Abstract

Several theoretical perspectives suggest that dyadic experiences are distinguished by patterns of behavioral change that emerge during interactions. Methods for examining change in behavior over time are well elaborated for the study of change along continuous dimensions. Extensions for charting increases and decreases in individuals' use of specific, categorically defined behaviors, however, are rarely invoked. Greater accessibility of Bayesian frameworks that facilitate formulation and estimation of the requisite models is opening new possibilities. This article provides a primer on how multinomial logistic growth models can be used to examine between-dyad differences in within-dyad behavioral change over the course of an interaction. We describe and illustrate how these models are implemented in the Bayesian framework using data from support conversations between strangers ( = 118 dyads) to examine (RQ1) how six types of listeners' and disclosers' behaviors change as support conversations unfold and (RQ2) how the disclosers' preconversation distress moderates the change in conversation behaviors. The primer concludes with a series of notes on (a) implications of modeling choices, (b) flexibility in modeling nonlinear change, (c) necessity for theory that specifies how and why change trajectories differ, and (d) how multinomial logistic growth models can help refine current theory about dyadic interaction. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

摘要

几种理论观点表明,二元互动体验的特点是在互动过程中出现的行为变化模式。在研究沿连续维度的变化时,用于考察行为随时间变化的方法已经得到了充分阐述。然而,用于描绘个体对特定的、分类定义的行为的使用增加和减少情况的扩展方法却很少被采用。贝叶斯框架的可及性提高,有助于构建和估计所需模型,这正在开启新的可能性。本文提供了一个关于如何使用多项逻辑增长模型来考察互动过程中二元组内行为变化的二元组间差异的入门介绍。我们描述并举例说明了如何在贝叶斯框架中使用陌生人之间支持性对话的数据(n = 118个二元组)来实现这些模型,以考察(研究问题1)随着支持性对话的展开,六种类型的倾听者和披露者行为如何变化,以及(研究问题2)披露者对话前的痛苦如何调节对话行为的变化。入门介绍最后给出了一系列注释,内容涉及(a)建模选择的影响,(b)建模非线性变化的灵活性,(c)指定变化轨迹如何以及为何不同的理论的必要性,以及(d)多项逻辑增长模型如何有助于完善当前关于二元互动的理论。(PsycInfo数据库记录(c)2023美国心理学会,保留所有权利)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验