Interdisciplinary Amyloidosis Center of Northern Bavaria, University and University Hospital Würzburg, Würzburg, Germany.
Department of Internal Medicine II, Hematology, University Hospital Würzburg, Würzburg, Germany.
PLoS One. 2023 Aug 10;18(8):e0289921. doi: 10.1371/journal.pone.0289921. eCollection 2023.
Statistical analyses of clinical data are a cornerstone in understanding pathomechanisms of disorders. In rare disorders, cross-sectional datasets of sufficient size are usually not available. Taking AA amyloidosis as an example of a life-threatening rare disorder resulting from of uncontrolled chronic inflammation, we propose techniques from time series analysis to predict organ response to treatment. The advantage of time-series analysis is that it solely relies on temporal variation and therefore allows analyzing organ response to treatment even when the cross-sectional dimension is small.
The joint temporal interdependence of inflammatory activity and organ response was modelled multivariately using vector autoregression (VAR) based on a unique 4.5 year spanning data set of routine laboratory, imaging data (e.g., 18F-Florbetaben-PET/CT) and functional investigations of a 68-year-old patient with multi-organ involvement of AA amyloidosis due to ongoing inflammatory activity of a malignant paraganglioma in stable disease for >20 years and excellent response to tocilizumab).
VAR analysis showed that alterations in inflammatory activity forecasted alkaline phosphatase (AP). AP levels, but not inflammatory activity at the previous measurement time point predicted proteinuria.
We demonstrate the feasibility and value of time series analysis for obtaining clinically reliable information when the rarity of a disease prevents conventional prognostic modelling approaches. We illustrate the comparative utility of blood, functional and imaging markers to monitor the development and regression of AA amyloidosis.
对临床数据进行统计学分析是理解疾病发病机制的基石。在罕见疾病中,通常无法获得足够大的横断面数据集。以 AA 淀粉样变性为例,这是一种由不受控制的慢性炎症引起的危及生命的罕见疾病,我们提出了时间序列分析技术来预测器官对治疗的反应。时间序列分析的优势在于它仅依赖于时间变化,因此即使在横断面维度较小的情况下,也可以分析器官对治疗的反应。
采用基于向量自回归(VAR)的多变量模型,对炎症活动和器官反应的联合时间相关性进行建模。该模型基于一名 68 岁患者的独特 4.5 年跨度的数据集,该患者患有多器官 AA 淀粉样变性,由于恶性副神经节瘤的持续炎症活动,处于稳定疾病状态超过 20 年,对托珠单抗治疗反应良好。
VAR 分析表明,炎症活动的变化预测碱性磷酸酶(AP)。AP 水平,而不是前一次测量时间点的炎症活动,预测蛋白尿。
我们证明了时间序列分析在疾病罕见性阻止常规预后建模方法时获取临床可靠信息的可行性和价值。我们说明了血液、功能和成像标志物在监测 AA 淀粉样变性的发展和消退方面的比较效用。