Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States of America.
PLoS One. 2023 Aug 10;18(8):e0289637. doi: 10.1371/journal.pone.0289637. eCollection 2023.
Time-delay embedding is an increasingly popular starting point for data-driven reduced-order modeling efforts. In particular, the singular value decomposition (SVD) of a block Hankel matrix formed from successive delay embeddings of the state of a dynamical system lies at the heart of several popular reduced-order modeling methods. In this paper, we show that the left singular vectors of this Hankel matrix are a discrete approximation of space-time proper orthogonal decomposition (POD) modes, and the singular values are square roots of the POD energies. Analogous to the connection between the SVD of a data matrix of snapshots and space-only POD, this connection establishes a clear interpretation of the Hankel modes grounded in classical theory, and we gain insights into the Hankel modes by instead analyzing the equivalent discrete space-time POD modes in terms of the correlation matrix formed by multiplying the Hankel matrix by its conjugate transpose. These insights include the distinct meaning of rows and columns, the implied norm in which the modes are optimal, the impact of the time step between snapshots on the modes, and an interpretation of the embedding dimension/height of the Hankel matrix in terms of the time window on which the modes are optimal. Moreover, the connections we establish offer opportunities to improve the convergence and computation time in certain practical cases, and to improve the accuracy of the modes with the same data. Finally, popular variants of POD, namely the standard space-only POD and spectral POD, are recovered in the limits that snapshots used to form each column of the Hankel matrix represent flow evolution over short and long times, respectively.
时滞嵌入是数据驱动的降阶建模工作的一个越来越流行的起点。特别是,由动力系统的状态的连续时滞嵌入形成的块汉克尔矩阵的奇异值分解(SVD)位于几种流行的降阶建模方法的核心。在本文中,我们证明了这个汉克尔矩阵的左奇异向量是时空正则正交分解(POD)模式的离散逼近,奇异值是 POD 能量的平方根。类似于快照数据矩阵的 SVD 与仅空间 POD 之间的连接,这种连接为基于经典理论的汉克尔模式建立了清晰的解释,我们通过分析由汉克尔矩阵乘以其共轭转置形成的相关矩阵来代替分析等效的离散时空 POD 模式,从而深入了解汉克尔模式。这些见解包括行和列的不同含义、模式最优的隐含范数、快照之间的时间步长对模式的影响,以及汉克尔矩阵的嵌入维度/高度的解释,即模式最优的时间窗口。此外,我们建立的联系为某些实际情况下的收敛性和计算时间的提高提供了机会,并为使用相同数据提高模式的准确性提供了机会。最后,在使用形成汉克尔矩阵每列的快照分别代表短时间和长时间的流演化的极限中,恢复了流行的 POD 变体,即标准的仅空间 POD 和谱 POD。