Yin Baoyi, Hao Liang, Li Xiaogan, Yang Qiguo
School of Microelectronics, Dalian University of Technology, Dalian 116024, China.
Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering, School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
J Colloid Interface Sci. 2023 Dec;651:602-611. doi: 10.1016/j.jcis.2023.07.170. Epub 2023 Jul 27.
Battery-like electrode materials are characterized by large theoretical capacitance but suffer from poor surface reactivity and insufficient electroactive sites thus limiting their practical charge storage capacity. To overcome this challenge, an effective strategy for vacancy modulation on battery-like electrode materials is necessary. Herein, we report for the first time an elaborately designed three-dimensional (3D) hierarchical heterostructure consisting of CoC@NiCo-LDH on conductive nickel foam as a freestanding supercapacitor electrode. Benefiting from the weakening of the coordination of CoO bonds, the CoC structure induces in-situ reconstruction of the NiCo-LDH lattice, resulting in the formation of abundant oxygen vacancies (interfacial octahedral Co sites) that lower the OH adsorption energy as determined by the density functional theory (DFT) calculation. The resulting CoC@NiCo-LDH/NF electrode exhibits an ultrahigh rate capability (2330 mF cm at 0.3 mA cm, with capacitance retention of 51.5 % at 30 mA cm) and remarkable cycling performance (capacitance retention of 81.6 % after 10,000 cycles). Additionally, the assembled asymmetric devices deliver an extremely high energy density of 246 μWh cm at the power density of 798 μW cm, with 87.8 % capacitance retention after 10,000 cycles at 8 mA cm. Overall, this study presents a simple yet effective strategy to construct high-performance battery-like electrodes for potential applications in energy storage, transportation, and communication.
类电池电极材料具有较大的理论电容,但存在表面反应性差和电活性位点不足的问题,从而限制了它们的实际电荷存储容量。为了克服这一挑战,需要一种有效的类电池电极材料空位调制策略。在此,我们首次报道了一种精心设计的三维(3D)分级异质结构,它由导电泡沫镍上的CoC@NiCo-LDH组成,作为独立的超级电容器电极。得益于CoO键配位的减弱,CoC结构诱导了NiCo-LDH晶格的原位重构,形成了丰富的氧空位(界面八面体Co位点),密度泛函理论(DFT)计算表明这些空位降低了OH吸附能。所得的CoC@NiCo-LDH/NF电极表现出超高的倍率性能(在0.3 mA cm时为2330 mF cm,在30 mA cm时电容保持率为51.5%)和出色的循环性能(10000次循环后电容保持率为81.6%)。此外,组装的不对称器件在功率密度为798 μW cm时提供了246 μWh cm的极高能量密度,在8 mA cm下10000次循环后电容保持率为87.8%。总体而言,本研究提出了一种简单而有效的策略,用于构建高性能的类电池电极,以用于储能、运输和通信等潜在应用。