Suppr超能文献

推进算法药物产品开发:药物配方中机器学习方法的建议。

Advancing algorithmic drug product development: Recommendations for machine learning approaches in drug formulation.

机构信息

School of Pharmacy, University College Cork, Cork, Ireland.

School of Pharmacy, University College Cork, Cork, Ireland; Roche Pharmaceutical Research & Early Development, Pre-Clinical CMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland.

出版信息

Eur J Pharm Sci. 2023 Dec 1;191:106562. doi: 10.1016/j.ejps.2023.106562. Epub 2023 Aug 9.

Abstract

Artificial intelligence is a rapidly expanding area of research, with the disruptive potential to transform traditional approaches in the pharmaceutical industry, from drug discovery and development to clinical practice. Machine learning, a subfield of artificial intelligence, has fundamentally transformed in silico modelling and has the capacity to streamline clinical translation. This paper reviews data-driven modelling methodologies with a focus on drug formulation development. Despite recent advances, there is limited modelling guidance specific to drug product development and a trend towards suboptimal modelling practices, resulting in models that may not give reliable predictions in practice. There is an overwhelming focus on benchtop experimental outcomes obtained for a specific modelling aim, leaving the capabilities of data scraping or the use of combined modelling approaches yet to be fully explored. Moreover, the preference for high accuracy can lead to a reliance on black box methods over interpretable models. This further limits the widespread adoption of machine learning as black boxes yield models that cannot be easily understood for the purposes of enhancing product performance. In this review, recommendations for conducting machine learning research for drug product development to ensure trustworthiness, transparency, and reliability of the models produced are presented. Finally, possible future directions on how research in this area might develop are discussed to aim for models that provide useful and robust guidance to formulators.

摘要

人工智能是一个快速发展的研究领域,具有颠覆性的潜力,可以改变制药行业的传统方法,从药物发现和开发到临床实践。机器学习是人工智能的一个分支,从根本上改变了计算机模拟,并且有能力简化临床转化。本文综述了数据驱动的建模方法,重点是药物制剂开发。尽管最近取得了一些进展,但针对药物产品开发的建模指南有限,建模实践的趋势也不理想,导致模型在实际中可能无法给出可靠的预测。人们过于关注为特定建模目的获得的台式实验结果,而数据挖掘或联合建模方法的应用潜力尚未得到充分探索。此外,对高精度的偏好可能导致对黑盒方法的依赖,而不是可解释的模型。这进一步限制了机器学习的广泛应用,因为黑盒模型无法为了提高产品性能而被轻易理解。在本文综述中,为确保所产生模型的可信度、透明度和可靠性,提出了用于药物产品开发的机器学习研究的建议。最后,讨论了该领域研究可能的发展方向,旨在为制剂师提供有用且稳健的指导模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验