Suppr超能文献

建立已批准药物的药物信息学知识库:一个支持药品开发的数据库。

Establishing a Pharmacoinformatics Repository of Approved Medicines: A Database to Support Drug Product Development.

作者信息

Murray Jack D, Bennett-Lenane Harriet, O'Dwyer Patrick J, Griffin Brendan T

机构信息

School of Pharmacy, University College Cork, College Road, Cork T12 K8AF, Ireland.

出版信息

Mol Pharm. 2025 Jan 6;22(1):408-423. doi: 10.1021/acs.molpharmaceut.4c00991. Epub 2024 Dec 20.

Abstract

Advanced predictive modeling approaches have harnessed data to fuel important innovations at all stages of drug development. However, the need for a machine-readable drug product library which consolidates many aspects of formulation design and performance remains largely unmet. This study presents a scripted, reproducible approach to database curation and explores its potential to streamline oral medicine development. The Product Information files for all centrally authorized drug products containing a small molecule active ingredient were retrieved programmatically from the European Medicines Agency Web site. Text processing isolated relevant information, including the maximum clinical dose, dosage form, route of administration, excipients, and pharmacokinetic performance. Chemical and bioactivity data were integrated through automated linking to external curated databases. The capability of this database to inform oral medicine development was assessed in the context of drug-likeness evaluation, excipient selection, and prediction of oral fraction absorbed. Existing filters of drug-likeness, such as the Rule of Five, were found to poorly capture the chemical space of marketed oral drug products. Association rule learning identified frequent patterns in tablet formulation compositions that can be used to establish excipient combinations that have seen clinical success. Binary prediction models of oral fraction absorbed constructed exclusively from regulatory data achieved acceptable performance (balanced accuracy = 0.725), demonstrating its modelability and potential for use during early stage molecule prioritization tasks. This study illustrates the impact of highly linked drug product data in accelerating clinical translation and underlines the ongoing need for accuracy and completeness of data reported in the regulatory datasphere.

摘要

先进的预测建模方法利用数据推动了药物开发各个阶段的重要创新。然而,整合制剂设计和性能诸多方面的机器可读药品库的需求在很大程度上仍未得到满足。本研究提出了一种编写脚本、可重复的数据库管理方法,并探讨了其简化口服药物开发的潜力。通过编程从欧洲药品管理局网站检索了所有含有小分子活性成分的中央授权药品的产品信息文件。文本处理分离出了相关信息,包括最大临床剂量、剂型、给药途径、辅料和药代动力学性能。通过自动链接到外部管理数据库整合了化学和生物活性数据。在药物相似性评估、辅料选择和口服吸收分数预测的背景下,评估了该数据库为口服药物开发提供信息的能力。发现现有的药物相似性筛选方法,如五规则,难以涵盖上市口服药品的化学空间。关联规则学习确定了片剂配方组成中的常见模式,可用于建立已取得临床成功的辅料组合。仅根据监管数据构建的口服吸收分数二元预测模型取得了可接受的性能(平衡准确率 = 0.725),证明了其可建模性以及在早期分子优先级排序任务中的应用潜力。本研究说明了高度关联的药品数据在加速临床转化方面的影响,并强调了对监管数据领域中报告数据的准确性和完整性的持续需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47a4/11707741/dd90ba57cb6b/mp4c00991_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验