Department of Neurosciences and Mental Health, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa-Norte, Lisbon, Portugal; Faculdade de Medicina-Instituto de Medicina Molecular-Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisbon, Portugal.
Faculdade de Medicina-Instituto de Medicina Molecular-Centro de Estudos Egas Moniz, Universidade de Lisboa, Lisbon, Portugal; Department of Neurology, Barts and London School of Medicine, Queen Mary University of London and Royal London Hospital, London, United Kingdom.
Handb Clin Neurol. 2023;195:17-29. doi: 10.1016/B978-0-323-98818-6.00018-2.
This chapter considers the principles that underlie neurophysiological studies of upper motor neuron or lower motor neuron lesions, based on an understanding of the normal structure and function of the motor system. Human motor neurophysiology consists of an evaluation of the active components of the motor system that are relevant to volitional movements. Relatively primitive motor skills include locomotion, much dependent on the spinal cord central pattern generator, reaching, involving proximal and distal muscles activation, and grasping. Humans are well prepared to perform complex movements like writing. The role of motor cortex is critical for the motor activity, very dependent on the continuous sensory feedback, and this is essential for adapting the force and speed control, which contributes to motor learning. Most corticospinal neurons in the brain project to brainstem and spinal cord, many with polysynaptic inhibitory rather than excitatory connections. The monosynaptic connections observed in humans and primates constitute a specialized pathway implicated in fractional finger movements. Spinal cord has a complex physiology, and local reflexes and sensory feedback are essential to control adapted muscular contraction during movement. The cerebellum has a major role in motor coordination, but also consistent roles in sensory activities, speech, and language, in motor and spatial memory, and in psychological activity. The motor unit is the final effector of the motor drive. The complex interplay between the lower motor neuron, its axon, motor end-plates, and muscle fibers allows a relevant plasticity in the movement output.
本章基于对运动系统正常结构和功能的理解,考虑了上运动神经元或下运动神经元损伤的神经生理学研究的原理。人类运动神经生理学包括对与随意运动相关的运动系统主动成分的评估。相对原始的运动技能包括运动,这很大程度上依赖于脊髓中枢模式发生器,还包括伸手、涉及近端和远端肌肉激活以及抓握。人类非常擅长执行复杂的运动,如书写。运动皮层在运动活动中起着至关重要的作用,非常依赖于连续的感觉反馈,这对于适应力量和速度控制至关重要,而力量和速度控制有助于运动学习。大脑中的大多数皮质脊髓神经元投射到脑干和脊髓,其中许多具有多突触抑制而不是兴奋连接。在人类和灵长类动物中观察到的单突触连接构成了涉及分数手指运动的特定途径。脊髓具有复杂的生理学,局部反射和感觉反馈对于控制运动过程中的适应性肌肉收缩至关重要。小脑在运动协调中起着重要作用,但在感觉活动、言语和语言、运动和空间记忆以及心理活动中也起着一致的作用。运动单位是运动驱动的最终效应器。下运动神经元、其轴突、运动终板和肌纤维之间的复杂相互作用允许运动输出具有相关的可塑性。