Hu Huijie, Wang Dongyue, Chen Yanlu, Gao Liang
College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
Cell Regen. 2025 May 14;14(1):17. doi: 10.1186/s13619-025-00231-3.
Spinal motoneurons control muscle fibers contraction and drive all motor behaviors in vertebrates. Although spinal motoneurons share the fundamental role of innervating muscle fibers, they exhibit remarkable diversity that reflects their specific identities. Defining the morphological changes during postnatal development is critical for elucidating this diversity. However, our understanding of the three-dimensional (3D) morphology of spinal motoneurons at these stages remains limited, largely due to the lack of high-throughput imaging tools. Using tiling light sheet microscopy combined with tissue clearing methods, we imaged motoneurons of the lateral and median motor column in the cervical and lumbar cord during postnatal development. By analyzing their soma size, we found that motoneurons innervating the upper limbs differentiate into two subpopulations with distinct soma size by postnatal day 14 (P14), while differentiation of motoneurons innervating the lower limbs is delayed. Furthermore, coupling adenovirus labeling with 3D volumetric reconstruction, we traced and measured the number and lengths of dendrites of flexor and extensor motoneurons in the lumbar cord, finding that the number of dendrites initially increases and subsequently declines as dendritic order rises. Together, these findings provide a quantitative analysis of the 3D morphological changes underlying spinal motoneuron diversity.
脊髓运动神经元控制肌肉纤维收缩,并驱动脊椎动物的所有运动行为。尽管脊髓运动神经元都具有支配肌肉纤维的基本作用,但它们表现出显著的多样性,反映了它们的特定身份。明确出生后发育过程中的形态变化对于阐明这种多样性至关重要。然而,我们对这些阶段脊髓运动神经元的三维(3D)形态的理解仍然有限,这主要是由于缺乏高通量成像工具。我们使用平铺光片显微镜结合组织透明化方法,对出生后发育期间颈髓和腰髓中外侧和内侧运动柱的运动神经元进行成像。通过分析它们的胞体大小,我们发现支配上肢的运动神经元在出生后第14天(P14)分化为两个具有不同胞体大小的亚群,而支配下肢的运动神经元的分化则延迟。此外,我们将腺病毒标记与3D体积重建相结合,追踪并测量了腰髓中屈肌和伸肌运动神经元树突的数量和长度,发现树突数量最初增加,随后随着树突顺序的上升而下降。这些发现共同提供了对脊髓运动神经元多样性背后的3D形态变化的定量分析。