Suppr超能文献

通过石墨烯共轭导电聚合物梯度膜的不对称设计实现多刺激响应仿生驱动

Enable Multi-Stimuli-Responsive Biomimetic Actuation with Asymmetric Design of Graphene-Conjugated Conductive Polymer Gradient Film.

作者信息

Liu Wendong, Lei Zhihui, Xing Wenkui, Xiong Jiacheng, Zhang Yingyue, Tao Peng, Shang Wen, Fu Benwei, Song Chengyi, Deng Tao

机构信息

The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.

Center of Hydrogen Science, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P.R. China.

出版信息

ACS Nano. 2023 Aug 22;17(16):16123-16134. doi: 10.1021/acsnano.3c05078. Epub 2023 Aug 11.

Abstract

In this paper, multiresponsive actuators based on asymmetric design of graphene-conjugated poly(3,4-ethylene dioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) gradient films have been developed by a simple drop casting method. The biomimetic actuation is attributed to the hygroscopic expansion property of PEDOT:PSS and the gradient distribution of graphene sheets within the film, which resembles the hierarchical swelling tissues of some plants in nature. Graphene-conjugated PEDOT:PSS (GCP) actuators exhibit reversible bending behavior under multistimuli such as moisture, organic vapor, electrothermal, and photothermal heating. Noticeably, the bending curvature reaches 2.15 cm under applied voltage as low as 1.5 V owing to the high electrical conductivity of GCP actuator. To mimic the motions of nyctinastic plants, a GCP artificial flower that spreads its petals under sunlight illumination has been fabricated. GCP actuators have been also demonstrated as intelligent light-controlled switches for light-emitting diodes and smart curtains for thermal management. Not only do the GCP gradient films exhibit potential applications in flexible electronics and energy harvesting/storage devices but also the facile fabrication of multiresponsive GCP actuators may shed light on the development of soft robotics, artificial muscles, wearable electronics, and smart sensors.

摘要

在本文中,通过简单的滴铸法制备了基于石墨烯共轭聚(3,4-乙撑二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)梯度膜的多响应致动器。这种仿生致动归因于PEDOT:PSS的吸湿膨胀特性以及膜内石墨烯片的梯度分布,这类似于自然界中一些植物的分层肿胀组织。石墨烯共轭PEDOT:PSS(GCP)致动器在诸如湿气、有机蒸汽、电热和光热加热等多刺激下表现出可逆弯曲行为。值得注意的是,由于GCP致动器的高电导率,在低至1.5 V的施加电压下弯曲曲率达到2.15 cm。为了模仿感夜性植物的运动,制备了一种在阳光照射下展开花瓣的GCP人造花。GCP致动器还被证明可作为发光二极管的智能光控开关和用于热管理的智能窗帘。GCP梯度膜不仅在柔性电子和能量收集/存储设备中具有潜在应用,而且多响应GCP致动器的简便制造可能为软机器人、人造肌肉、可穿戴电子和智能传感器的发展提供启示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验