Tu Suo, Tian Ting, Zhang Jinsheng, Liang Suzhe, Pan Guangjiu, Ma Xiaoxin, Liu Liangzhen, Fischer Roland A, Müller-Buschbaum Peter
Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany.
Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center (CRC), TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany.
ACS Nano. 2024 Dec 24;18(51):34829-34841. doi: 10.1021/acsnano.4c12502. Epub 2024 Dec 9.
Organic conducting polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has garnered enormous attention in organic electronics due to its low-cost solution processability, highly tunable conductivity, superior mechanical flexibility, and good biocompatibility together with excellent atmospheric stability. Nevertheless, limited electrical properties and unfavorable water instability of pristine PEDOT:PSS film impede its further implementation in a broad spectrum of practical applications. In this work, the successful tailoring of the intrinsic electrostatic interaction within PEDOT:PSS and consequent optimized electrical properties are enabled by a simple yet effective ionic salt post-treatment strategy. The choice of zinc di[bis(trifluoromethylsulfonyl)imide] (Zn(TFSI)) not only endows the post-treated PEDOT:PSS film with high electrical properties but also other compelling characteristics, including superior water stability, excellent mechanical flexibility, and fast humidity responsiveness. Multidimensional characterizations are conducted to gain in-depth insights into the mechanisms underlying such improved performance, ranging from intermolecular interactions, polymer conformations, and doping levels to microstructural characteristics. Benefiting from these versatile properties, the as-prepared freestanding Zn(TFSI)-post-treated PEDOT:PSS films can serve as promising candidates for high-performance polymeric materials integrated into multifunctional flexible electronics, including thermoelectric power generators, conductive hydrogels, and humidity-responsive actuators. This study demonstrates a facile methodology for the exploration of multifunctional conducting polymers, whose implications can extend across a wide range of next-generation wearable devices, bioelectronics, and soft robotics.
有机导电聚合物聚(3,4 - 亚乙基二氧噻吩):聚(4 - 苯乙烯磺酸盐)(PEDOT:PSS)因其低成本的溶液可加工性、高度可调的导电性、优异的机械柔韧性、良好的生物相容性以及出色的大气稳定性,在有机电子学领域备受关注。然而,原始PEDOT:PSS薄膜有限的电学性能和不利的水不稳定性阻碍了其在广泛实际应用中的进一步实施。在这项工作中,通过一种简单而有效的离子盐后处理策略成功实现了对PEDOT:PSS内部固有静电相互作用的调控以及随之而来的电学性能优化。双[双(三氟甲基磺酰)亚胺]锌(Zn(TFSI))的选择不仅赋予后处理的PEDOT:PSS薄膜高电学性能,还赋予了其他引人注目的特性,包括卓越的水稳定性、出色的机械柔韧性和快速的湿度响应性。进行了多维度表征,以深入了解这种性能改善背后的机制,范围涵盖分子间相互作用、聚合物构象、掺杂水平以及微观结构特征。受益于这些多功能特性,所制备的独立式Zn(TFSI)后处理PEDOT:PSS薄膜可作为高性能聚合物材料的有前途的候选者,集成到多功能柔性电子器件中,包括热电发电机、导电水凝胶和湿度响应致动器。这项研究展示了一种探索多功能导电聚合物的简便方法,其影响可扩展到广泛的下一代可穿戴设备、生物电子学和软机器人领域。