Department of Civil and Environmental Engineering, Imperial College London, London SW7 2AZ, United Kingdom.
Shanghai Shaanxi Coal Hi-tech Research Institute Co., Ltd., Shanghai 201613, China.
Environ Sci Technol. 2023 Aug 22;57(33):12302-12314. doi: 10.1021/acs.est.2c07813. Epub 2023 Aug 11.
Nanaerobes are a newly described class of microorganisms that use a unique cytochrome oxidase to achieve nanaerobic respiration at <2 μM dissolved oxygen (∼1% of atmospheric oxygen) but are not viable above this value due to the lack of other terminal oxidases. Although sharing an overlapping ecological niche with methanogenic archaea, the role of nanaerobes in methanogenic systems has not been studied so far. To explore their occurrence and significance, we re-analyzed published meta-omic datasets from animal rumina and waste-to-energy digesters, including conventional anaerobic digesters and anaerobic digesters with ultra-low oxygenation. Results show that animal rumina share broad similarities in the microbial community and system performance with oxygenated digesters, rather than with conventional anaerobic digesters, implying that trace levels of oxygen drive the efficient digestion in ruminants. The rumen system serves as an ideal model for the newly named nanaerobic digestion, as it relies on the synergistic co-occurrence of nanaerobes and methanogens for methane yield enhancement. The most abundant ruminal bacterial family e contains many nanaerobes, which perform not only anaerobic fermentation but also nanaerobic respiration using cytochrome oxidase. These nanaerobes generally accompany hydrogenotrophic methanogens to constitute a thermodynamically and physiologically consistent framework for efficient methane generation. Our findings provide new insights into ruminal methane emissions and strategies to enhance methane generation from biomass.
产微好氧菌是一类新描述的微生物,它们使用独特的细胞色素氧化酶在<2 μM 溶解氧(约为大气氧的 1%)下实现微好氧呼吸,但由于缺乏其他末端氧化酶,在这个值以上无法生存。尽管与产甲烷古菌具有重叠的生态位,但到目前为止,产微好氧菌在产甲烷系统中的作用尚未得到研究。为了探索它们的发生和意义,我们重新分析了来自动物瘤胃和废物能源消化器的已发表的宏基因组数据集,包括常规厌氧消化器和超低氧化的厌氧消化器。结果表明,动物瘤胃在微生物群落和系统性能方面与充氧消化器有广泛的相似之处,而不是与常规厌氧消化器相似,这意味着痕量的氧气驱动着反刍动物的高效消化。瘤胃系统是新命名的微好氧消化的理想模型,因为它依赖于产微好氧菌和产甲烷菌的协同共生来提高甲烷产量。最丰富的瘤胃细菌科 e 包含许多产微好氧菌,它们不仅进行厌氧发酵,还使用细胞色素氧化酶进行微好氧呼吸。这些产微好氧菌通常伴随着氢营养型产甲烷菌,构成了高效甲烷生成的热力学和生理学一致的框架。我们的发现为瘤胃甲烷排放提供了新的见解,并为增强生物质甲烷生成提供了策略。