Instituto Politécnico Nacional, Centro Mexicano Para la Producción más Limpia, Av. Acueducto s/n, 07340, Ciudad de Mexico, Mexico.
Departamento de Genética y Biología Molecular, Cinvestav, Av. Instituto Politécnico Nacional 2508, 07360, Ciudad de México, Mexico.
Biotechnol Lett. 2023 Oct;45(10):1339-1353. doi: 10.1007/s10529-023-03414-7. Epub 2023 Aug 3.
Methane production by microbial fermentation of municipal waste is a challenge for better yield processes. This work describes the characterization of a hydrogenotrophic methanogen microbial community used in a bioaugmentation procedure to improve the methane yield in a thermophilic anaerobic process, digesting the organic fraction of municipal solid waste. The performance of the bioaugmentation was assessed in terms of methane production and changes in the microbial community structure. The results showed that bioaugmentation slightly improved the cumulative methane yield (+ 4%) in comparison to the control, and its use led to an acceleration of the methanogenesis stage. We observed associated significant changes in the relative abundance of taxa and their interactions, using high throughput DNA sequencing of V3-16S rRNA gene libraries, where the abundance of the archaeal hydrogenotrophic genus Methanoculleus (class Methanomicrobia, phylum Euryarchaeota) and the bacterial order MBA08 (class Clostridia, phylum Firmicutes) were dominant. The relevant predicted metabolic pathways agreed with substrate degradation and the anaerobic methanogenic process. The purpose of the study was to evaluate the effect of the addition of hydrogenotrophic methanogens in the generation of methane, while treating organic waste through anaerobic digestion.
利用微生物发酵城市废物生产甲烷是提高产量过程的一个挑战。本工作描述了一种氢营养型产甲烷微生物群落的特性,该群落用于生物增强程序,以提高在高温厌氧过程中消化城市固体废物有机部分时的甲烷产量。根据甲烷产量和微生物群落结构的变化来评估生物增强的效果。结果表明,与对照相比,生物增强略微提高了累积甲烷产量(+4%),并且其使用导致产甲烷阶段的加速。我们通过高通量 DNA 测序 V3-16S rRNA 基因文库观察到相关的分类群相对丰度和相互作用的显著变化,其中古菌氢营养型属 Methanoculleus(门 Methanomicrobia,纲 Euryarchaeota)和细菌 MBA08 目(门 Clostridia,纲 Firmicutes)的丰度占主导地位。相关的预测代谢途径与底物降解和厌氧产甲烷过程一致。本研究的目的是评估添加氢营养型产甲烷菌对甲烷生成的影响,同时通过厌氧消化处理有机废物。