Su Pingru, Zhang Wenjing, Guo Chenxing, Liu Hong, Xiong Chuanhong, Tang Runxu, He Chuanxin, Chen Zhi, Yu Xiujun, Wang Heng, Li Xiaopeng
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China.
Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, Guangdong 518060, People's Republic of China.
J Am Chem Soc. 2023 Aug 23;145(33):18607-18622. doi: 10.1021/jacs.3c06211. Epub 2023 Aug 11.
Coordination-driven self-assembly enables the spontaneous construction of metallo-supramolecules with high precision, facilitated by dynamic and reversible metal-ligand interactions. The dynamic nature of coordination, however, results in structural lability in many metallo-supramolecular assembly systems. Consequently, it remains a formidable challenge to achieve self-assembly reversibility and structural stability simultaneously in metallo-supramolecular systems. To tackle this issue, herein, we incorporate an acid-/base-responsive tridentate ligand into multitopic building blocks to precisely construct a series of metallo-supramolecular cages through coordination-driven self-assembly. These dynamic cagelike assemblies can be transformed to their static states through mild deprotonation/oxidation, leading to ultrastable skeletons that can withstand high temperatures, metal ion chelators, and strong acid/base conditions. This transformation provides a reliable and powerful approach to manipulate the kinetic features and stability of metallo-supramolecules and allows for modulation of encapsulation and release behaviors of metallo-cages when utilizing nanoscale quantum dots (QDs) as guest molecules.
配位驱动的自组装能够通过动态且可逆的金属-配体相互作用,实现高精度的金属超分子的自发构建。然而,配位的动态特性导致许多金属超分子组装体系结构不稳定。因此,在金属超分子体系中同时实现自组装可逆性和结构稳定性仍然是一个巨大的挑战。为了解决这个问题,在此我们将一个酸碱响应性三齿配体引入多官能团构建模块中,通过配位驱动的自组装精确构建了一系列金属超分子笼。这些动态的笼状组装体可以通过温和的去质子化/氧化转化为静态状态,从而形成能够耐受高温、金属离子螯合剂和强酸/强碱条件的超稳定骨架。这种转变为调控金属超分子的动力学特征和稳定性提供了一种可靠且强大的方法,并且在利用纳米级量子点(QDs)作为客体分子时,能够调节金属笼的包封和释放行为。