Suppr超能文献

识别314例住院患者的用药处方错误及临床相关因素,以改进多维度临床决策支持算法。

Identification of Medication Prescription Errors and Factors of Clinical Relevance in 314 Hospitalized Patients for Improved Multidimensional Clinical Decision Support Algorithms.

作者信息

Russmann Stefan, Martinelli Fabiana, Jakobs Franziska, Pannu Manjinder, Niedrig David F, Burden Andrea Michelle, Kleber Martina, Béchir Markus

机构信息

Swiss Federal Institute of Technology Zurich (ETHZ), 8093 Zurich, Switzerland.

Faculty of Medicine, University of Nicosia, 2408 Egkomi, Cyprus.

出版信息

J Clin Med. 2023 Jul 26;12(15):4920. doi: 10.3390/jcm12154920.

Abstract

Potential medication errors and related adverse drug events (ADE) pose major challenges in clinical medicine. Clinical decision support systems (CDSSs) help identify preventable prescription errors leading to ADEs but are typically characterized by high sensitivity and low specificity, resulting in poor acceptance and alert-overriding. With this cross-sectional study we aimed to analyze CDSS performance, and to identify factors that may increase CDSS specificity. Clinical pharmacology services evaluated current pharmacotherapy of 314 patients during hospitalization across three units of two Swiss tertiary care hospitals. We used two CDSSs (pharmaVISTA and MediQ), primarily for the evaluation of drug-drug interactions (DDI). Additionally, we evaluated potential drug-disease, drug-age, drug-food, and drug-gene interactions. Recommendations for change of therapy were forwarded without delay to treating physicians. Among 314 patients, automated analyses by both CDSSs produced an average of 15.5 alerts per patient. In contrast, additional expert evaluation resulted in only 0.8 recommendations per patient to change pharmacotherapy. For clinical pharmacology experts, co-factors such as comorbidities and laboratory results were decisive for the classification of CDSS alerts as clinically relevant in individual patients in about 70% of all decisions. Such co-factors should therefore be used for the development of multidimensional CDSS alert algorithms with improved specificity. In combination with local expert services, this poses a promising approach to improve drug safety in clinical practice.

摘要

潜在的用药错误及相关药物不良事件(ADE)给临床医学带来了重大挑战。临床决策支持系统(CDSS)有助于识别导致ADE的可预防处方错误,但通常具有高敏感性和低特异性的特点,导致其接受度低且常有警报被忽略。通过这项横断面研究,我们旨在分析CDSS的性能,并确定可能提高CDSS特异性的因素。临床药理学服务评估了瑞士两家三级护理医院三个科室314例住院患者的当前药物治疗情况。我们使用了两个CDSS(pharmaVISTA和MediQ),主要用于评估药物相互作用(DDI)。此外,我们还评估了潜在的药物-疾病、药物-年龄、药物-食物和药物-基因相互作用。治疗变更建议会立即转发给主治医生。在314例患者中,两个CDSS的自动分析平均每位患者产生15.5条警报。相比之下,额外的专家评估每位患者仅产生0.8条改变药物治疗的建议。对于临床药理学专家而言,在所有决策中约70%的情况下,合并症和实验室检查结果等辅助因素对于将CDSS警报分类为个体患者的临床相关因素具有决定性作用。因此,此类辅助因素应用于开发具有更高特异性的多维CDSS警报算法。结合当地专家服务,这为提高临床实践中的用药安全性提供了一种很有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c6c9/10419486/0b3a69a7bcb2/jcm-12-04920-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验