Suppr超能文献

基于模糊逻辑的系统,利用糖尿病视网膜病变影像标记(DRIL)、高反射灶(HRF)和囊样病变,从光学相干断层扫描(OCT)B扫描图像识别糖尿病性黄斑水肿的严重程度

Fuzzy Logic-Based System for Identifying the Severity of Diabetic Macular Edema from OCT B-Scan Images Using DRIL, HRF, and Cystoids.

作者信息

Tripathi Aditya, Kumar Preetham, Tulsani Akshat, Chakrapani Pavithra Kodiyalbail, Maiya Geetha, Bhandary Sulatha V, Mayya Veena, Pathan Sameena, Achar Raghavendra, Acharya U Rajendra

机构信息

Department of Information & Communication Technology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India.

Department of Computer Science and Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India.

出版信息

Diagnostics (Basel). 2023 Jul 31;13(15):2550. doi: 10.3390/diagnostics13152550.

Abstract

Diabetic Macular Edema (DME) is a severe ocular complication commonly found in patients with diabetes. The condition can precipitate a significant drop in VA and, in extreme cases, may result in irreversible vision loss. Optical Coherence Tomography (OCT), a technique that yields high-resolution retinal images, is often employed by clinicians to assess the extent of DME in patients. However, the manual interpretation of OCT B-scan images for DME identification and severity grading can be error-prone, with false negatives potentially resulting in serious repercussions. In this paper, we investigate an Artificial Intelligence (AI) driven system that offers an end-to-end automated model, designed to accurately determine DME severity using OCT B-Scan images. This model operates by extracting specific biomarkers such as Disorganization of Retinal Inner Layers (DRIL), Hyper Reflective Foci (HRF), and cystoids from the OCT image, which are then utilized to ascertain DME severity. The rules guiding the fuzzy logic engine are derived from contemporary research in the field of DME and its association with various biomarkers evident in the OCT image. The proposed model demonstrates high efficacy, identifying images with DRIL with 93.3% accuracy and successfully segmenting HRF and cystoids from OCT images with dice similarity coefficients of 91.30% and 95.07% respectively. This study presents a comprehensive system capable of accurately grading DME severity using OCT B-scan images, serving as a potentially invaluable tool in the clinical assessment and treatment of DME.

摘要

糖尿病性黄斑水肿(DME)是糖尿病患者常见的一种严重眼部并发症。这种病症会导致视力显著下降,在极端情况下,可能会导致不可逆转的视力丧失。光学相干断层扫描(OCT)是一种能够生成高分辨率视网膜图像的技术,临床医生经常使用它来评估患者DME的程度。然而,人工解读用于DME识别和严重程度分级的OCT B扫描图像容易出错,假阴性结果可能会带来严重后果。在本文中,我们研究了一种由人工智能(AI)驱动的系统,该系统提供了一个端到端的自动化模型,旨在使用OCT B扫描图像准确确定DME的严重程度。该模型通过从OCT图像中提取特定的生物标志物来运行,如视网膜内层紊乱(DRIL)、高反射灶(HRF)和囊肿,然后利用这些标志物来确定DME的严重程度。指导模糊逻辑引擎的规则源自DME领域的当代研究及其与OCT图像中各种明显生物标志物的关联。所提出的模型显示出很高的效能,识别有DRIL的图像的准确率为93.3%,并分别以91.30%和95.07%的骰子相似系数成功地从OCT图像中分割出HRF和囊肿。本研究提出了一个能够使用OCT B扫描图像准确分级DME严重程度的综合系统,可作为DME临床评估和治疗中潜在的宝贵工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d386/10416860/52b185f74da4/diagnostics-13-02550-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验