Suppr超能文献

使用铵油炸药进行激波管试验的结构面板的抗爆能力

Blast Resistance Capacities of Structural Panels Subjected to Shock-Tube Testing with ANFO Explosive.

作者信息

Park Gang-Kyu, Moon Jae Heum, Shin Hyun-Seop, Kim Sung-Wook

机构信息

Department of Structural Engineering Research, Korea Institute of Civil Engineering and Building Technology, 283 Goyangdae-ro, Ilsanseo-gu, Goyang-si 10223, Gyeonggi-do, Republic of Korea.

出版信息

Materials (Basel). 2023 Jul 27;16(15):5274. doi: 10.3390/ma16155274.

Abstract

This study presents a series of shock-tube tests conducted on structural panels using ammonium nitrate fuel oil (ANFO) as the explosive. The characteristics of the blast waves propagating through the shock tube were analyzed by measuring the pressure generated at specific locations inside the shock tube. The extent of differences in blast pressure generated in a confined space, such as the shock tube, was compared to that predicted by the proposed method in the Unified Facilities Criteria 3-340-02 report. The target specimens of this study were plain reinforced concrete (RC), high-performance fiber-reinforced cementitious composites (HPFRCCs), and composite panels. Polyurea-coated RC panels and steel plate grid structure-attached RC panels were used as composite panels to evaluate the effectiveness of the coating and structural damping methods on the enhancement of structural blast resistance. The tests were conducted with different ANFO charges, and the crack patterns and lengths on the rear surface of each panel were measured. Based on the measured results, discussions regarding the blast resistance capacities of each panel type are provided.

摘要

本研究展示了一系列在结构面板上进行的激波管试验,试验使用硝酸铵燃料油(ANFO)作为炸药。通过测量激波管内特定位置产生的压力,分析了在激波管中传播的爆炸波的特性。将在诸如激波管这样的密闭空间中产生的爆炸压力差异程度,与《统一设施标准》3 - 340 - 02报告中所提出方法预测的结果进行了比较。本研究的目标试件为普通钢筋混凝土(RC)、高性能纤维增强水泥基复合材料(HPFRCCs)以及复合板。使用聚脲涂层RC板和附着钢板网格结构的RC板作为复合板,以评估涂层和结构阻尼方法对增强结构抗爆性的有效性。试验采用不同的ANFO装药进行,并测量了每个面板后表面的裂纹模式和长度。基于测量结果,对每种面板类型的抗爆能力进行了讨论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b834/10419404/bc7975da8c12/materials-16-05274-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验