Abu Bakar Mohd Supian, Syamsir Agusril, Alhayek Abdulrahman, Asyraf Muhammad Rizal Muhammad, Itam Zarina, Shaik Shaikh Muhammad Mubin, Abd Aziz Nurhanani, Jamal Tarique, Mohd Mansor Siti Aminah
Institute of Energy Infrastructure (IEI), College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia.
Civil Engineering Department, College of Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia.
Materials (Basel). 2023 Jul 29;16(15):5328. doi: 10.3390/ma16155328.
This paper presents an experimental and numerical investigation of pultruded composite glass fibre-reinforced polymer (pGFRP) cross-arms subjected to flexural creep behaviour to assess their performance and sustainability in composite cross-arm structure applications. The primary objective of this study was to investigate the failure creep behaviour of pGFRP cross-arms with different stacking sequences. Specifically, the study aimed to understand the variations in strain rate exhibited during different stages of the creep process. Therefore, this study emphasizes a simplified approach within the experiment, numerical analysis, and mathematical modelling of three different pGFRP composites to estimate the stiffness reduction factors that determine the prediction of failure. The findings show that Findley's power law and the Burger model projected very different strains and diverged noticeably outside the testing period. Findley's model estimated a minimal increase in total strain over 50 years, while the Burger model anticipated PS-1 and PS-2 composites would fail within about 11 and 33 years, respectively. The Burger model's forecasts might be more reasonable due to the harsh environment the cross-arms are expected to withstand. The endurance and long-term performance of composite materials used in overhead power transmission lines may be predicted mathematically, and this insight into material property factors can help with design and maintenance.
本文对拉挤成型的复合玻璃纤维增强聚合物(pGFRP)横担进行了实验和数值研究,以评估其在复合横担结构应用中的弯曲蠕变行为、性能和可持续性。本研究的主要目的是研究不同堆叠顺序的pGFRP横担的失效蠕变行为。具体而言,该研究旨在了解蠕变过程不同阶段的应变率变化。因此,本研究强调在对三种不同的pGFRP复合材料进行实验、数值分析和数学建模时采用简化方法,以估计决定失效预测的刚度降低因子。研究结果表明,芬德利幂律和伯格模型预测的应变差异很大,且在测试期外明显发散。芬德利模型估计50年内总应变的增加量极小,而伯格模型预测PS - 1和PS - 2复合材料将分别在约11年和33年内失效。考虑到横担预期承受的恶劣环境,伯格模型的预测可能更合理。架空输电线路中使用的复合材料的耐久性和长期性能可以通过数学方法预测,这种对材料特性因素的洞察有助于设计和维护。