Syamsir Agusril, Nadhirah Afiqah, Mohamad Daud, Beddu Salmia, Asyraf Muhammad Rizal Muhammad, Itam Zarina, Anggraini Vivi
Institute of Energy Infrastructure, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia.
Department of Civil Engineering, Universiti Tenaga Nasional, Kajang 43000, Selangor, Malaysia.
Polymers (Basel). 2022 Apr 11;14(8):1563. doi: 10.3390/polym14081563.
The usage of glass fiber reinforced polymer (GFRP) composite cross-arms in transmission towers is relatively new compared to wood timber cross-arms. In this case, many research works conducted experiments on composite cross-arms, either in coupon or full-scale size. However, none performed finite element (FE) analyses on full-scale composite cross-arms under actual working load and broken wire conditions. Thus, this work evaluates the performance of glass fiber reinforced polymer (GFRP) composite cross-arm tubes in 275 kV transmission towers using FE analysis. In this study, the performance analysis was run mimicking actual normal and broken wire conditions with five and three times more than working loads (WL). The full-scale assembly load test experiment outcomes were used to validate the FE analysis. Furthermore, the mechanical properties values of the GFRP composite were incorporated in simulation analysis based on the previous experimental work on coupons samples of GFRP tubes. Additionally, parametric studies were performed to determine the ultimate applied load and factor of safety for both normal and broken wire loading conditions. This research discovered that the GFRP composite cross-arm could withstand the applied load of five times and three times working load (WL) for normal and broken wire conditions, respectively. In addition, the factor of safety of tubes was 1.08 and 1.1 for normal and broken wire conditions, respectively, which can be considered safe to use. Hence, the composite cross-arms can sustain load two times more than the design requirement, which is two times the working load for normal conditions. In future studies, it is recommended to analyze the fatigue properties of the composite due to wind loading, which may induce failure in long-term service.
与木质横担相比,玻璃纤维增强聚合物(GFRP)复合材料横担在输电塔中的应用相对较新。在这种情况下,许多研究工作对复合材料横担进行了试验,试验规模有试样级或全尺寸级。然而,尚无研究在实际工作载荷和断线条件下对全尺寸复合材料横担进行有限元(FE)分析。因此,本研究采用有限元分析评估275 kV输电塔中玻璃纤维增强聚合物(GFRP)复合材料横担管的性能。本研究通过模拟实际正常和断线条件下超过工作载荷(WL)五倍和三倍的载荷来进行性能分析。全尺寸组装载荷试验的结果用于验证有限元分析。此外,基于之前对GFRP管试样的实验工作,将GFRP复合材料的力学性能值纳入模拟分析。此外,还进行了参数研究,以确定正常和断线载荷条件下的极限施加载荷和安全系数。本研究发现,GFRP复合材料横担在正常和断线条件下分别能够承受五倍和三倍工作载荷(WL)的施加载荷。此外,横担管在正常和断线条件下的安全系数分别为1.08和1.1,可以认为使用是安全的。因此,复合材料横担能够承受比设计要求多两倍的载荷,即正常条件下工作载荷的两倍。在未来的研究中,建议分析风荷载作用下复合材料的疲劳性能,风荷载可能会在长期使用中导致失效。