Suppr超能文献

用于增强型储能设备的稻壳活性炭表征

Characterization of Activated Carbon from Rice Husk for Enhanced Energy Storage Devices.

作者信息

Yerdauletov Meir S, Nazarov Kuanysh, Mukhametuly Bagdaulet, Yeleuov Mukhtar A, Daulbayev Chingis, Abdulkarimova Roza, Yskakov Almas, Napolskiy Filipp, Krivchenko Victor

机构信息

Institute of Nuclear Physics, Almaty 050032, Kazakhstan.

Joint Institute for Nuclear Research, 141980 Dubna, Russia.

出版信息

Molecules. 2023 Aug 2;28(15):5818. doi: 10.3390/molecules28155818.

Abstract

The production of activated carbon (AC) from lignocellulosic biomass through chemical activation is gaining global attention due to its scalability, economic viability, and environmental advantages. Chemical activation offers several benefits, including energy efficiency, reduced carbonization time, and lower temperature requirements. In this study, potassium hydroxide (KOH) was employed for chemical activation, resulting in activated carbon with a high specific surface area of ~3050 m/g. The structural analysis revealed the presence of graphitized carbon in the activated carbon matrix, accounting for over 15%. The X-ray diffraction (XRD) technique was employed to investigate the activated carbon derived from rice husk (RH). The potential applications of activated carbon obtained from rice husks through chemical activation were explored, including its use for heavy metal removal, elimination of organic pollutants, and as an active material in hybrid energy storage devices. Furthermore, a scaling methodology for the production of activated carbon was proposed, facilitating its industrial implementation.

摘要

通过化学活化从木质纤维素生物质生产活性炭(AC)因其可扩展性、经济可行性和环境优势而受到全球关注。化学活化具有多种益处,包括能源效率高、碳化时间缩短以及温度要求较低。在本研究中,使用氢氧化钾(KOH)进行化学活化,得到了比表面积高达约3050 m/g的活性炭。结构分析表明,活性炭基质中存在石墨化碳,占比超过15%。采用X射线衍射(XRD)技术研究了稻壳(RH)衍生的活性炭。探索了通过化学活化从稻壳获得的活性炭的潜在应用,包括用于去除重金属、消除有机污染物以及作为混合储能装置中的活性材料。此外,还提出了一种活性炭生产的规模化方法,以促进其工业应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b90/10421275/f3168788804c/molecules-28-05818-g001.jpg

相似文献

1
Characterization of Activated Carbon from Rice Husk for Enhanced Energy Storage Devices.
Molecules. 2023 Aug 2;28(15):5818. doi: 10.3390/molecules28155818.
4
Onion husk-derived high surface area graphene-like carbon for supercapacitor electrode material application.
Heliyon. 2024 Jun 13;10(12):e32915. doi: 10.1016/j.heliyon.2024.e32915. eCollection 2024 Jun 30.
5
Activated carbon from biomass precursors using phosphoric acid: A review.
Heliyon. 2022 Dec 1;8(12):e11940. doi: 10.1016/j.heliyon.2022.e11940. eCollection 2022 Dec.
6
Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation.
Springerplus. 2016 Aug 3;5(1):1248. doi: 10.1186/s40064-016-2932-8. eCollection 2016.
7
The effect of KOH activation and Ag nanoparticle incorporation on rice husk-based porous materials for wastewater treatment.
Chemosphere. 2022 Mar;291(Pt 3):132760. doi: 10.1016/j.chemosphere.2021.132760. Epub 2021 Nov 2.
8
Remediation of heavy metal polluted waters using activated carbon from lignocellulosic biomass: An update of recent trends.
Chemosphere. 2022 Sep;302:134825. doi: 10.1016/j.chemosphere.2022.134825. Epub 2022 May 5.
10
Micro-mesoporous carbons from original and pelletized rice husk via one-step catalytic pyrolysis.
Bioresour Technol. 2018 Dec;269:67-73. doi: 10.1016/j.biortech.2018.08.083. Epub 2018 Aug 21.

引用本文的文献

1
Cellulose Nanocrystals and Rice Husk Surface Functionalization Induced by Infrared Thermal Activation.
ChemSusChem. 2025 Jun 2;18(11):e202500164. doi: 10.1002/cssc.202500164. Epub 2025 Mar 27.

本文引用的文献

1
Sustainable synthesis of graphene sand composite from waste cooking oil for dye removal.
Sci Rep. 2023 Feb 2;13(1):1931. doi: 10.1038/s41598-023-27477-8.
2
Activated carbon from biomass precursors using phosphoric acid: A review.
Heliyon. 2022 Dec 1;8(12):e11940. doi: 10.1016/j.heliyon.2022.e11940. eCollection 2022 Dec.
3
Electrochemical Performance of Chemically Activated Carbons from Sawdust as Supercapacitor Electrodes.
Nanomaterials (Basel). 2022 Sep 28;12(19):3391. doi: 10.3390/nano12193391.
4
The effect of graphitization degree of carbonaceous material on the electrochemical performance for aluminum-ion batteries.
RSC Adv. 2019 Nov 28;9(67):38990-38997. doi: 10.1039/c9ra07234a. eCollection 2019 Nov 27.
5
An Inorganic-Rich Solid Electrolyte Interphase for Advanced Lithium-Metal Batteries in Carbonate Electrolytes.
Angew Chem Int Ed Engl. 2021 Feb 15;60(7):3661-3671. doi: 10.1002/anie.202012005. Epub 2020 Dec 16.
6
N-Propyl-N-Methylpyrrolidinium Difluoro(oxalato)borate as a Novel Electrolyte for High-Voltage Supercapacitor.
Front Chem. 2019 Oct 9;7:664. doi: 10.3389/fchem.2019.00664. eCollection 2019.
7
Highly Stable Lithium Metal Batteries Enabled by Regulating the Solvation of Lithium Ions in Nonaqueous Electrolytes.
Angew Chem Int Ed Engl. 2018 May 4;57(19):5301-5305. doi: 10.1002/anie.201801513. Epub 2018 Mar 7.
8
Raman spectroscopy as a versatile tool for studying the properties of graphene.
Nat Nanotechnol. 2013 Apr;8(4):235-46. doi: 10.1038/nnano.2013.46.
9
Graphene from sugar and its application in water purification.
ACS Appl Mater Interfaces. 2012 Aug;4(8):4156-63. doi: 10.1021/am300889u. Epub 2012 Jul 25.
10
Probing the nature of defects in graphene by Raman spectroscopy.
Nano Lett. 2012 Aug 8;12(8):3925-30. doi: 10.1021/nl300901a. Epub 2012 Jul 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验