Neme Ibsa, Gonfa Girma, Masi Chandran
Department of Chemical Engineering, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.
Biotechnology and Bioprocess Center of Excellence, Addis Ababa Science and Technology University, Post Box: 16417 Addis Ababa, Ethiopia.
Heliyon. 2022 Dec 1;8(12):e11940. doi: 10.1016/j.heliyon.2022.e11940. eCollection 2022 Dec.
Low-cost and renewable adsorbent activated carbon from lignocellulosic biomass is a focus of worldwide concern due to its readily available waste disposal problems in the environment. Physical and chemical processes are the main procedures forproduction of biomass-activated carbon (AC). Activating lignocellulosic biomass by chemical methods in terms of energy performance, lower timecarbonization, and temperature is mutual forthe production of activated carbon. Out of chemical activating agents (HPO, HSO, ZnCl, FeCl, NaOH, KOH, and KCO), HPO is the most commonly used chemical activating agent during the synthesis of activated carbon from lignocellulosic biomass because of its ease of recovery, low environmental impact, and higher carbon yield. The surface area of most activated carbon from lignocellulosic biomass by HPOwas in the variability of 456.1-2806 m/g, yielding 26.1-85 % and an extreme adsorption capacity of 2.5-89.29 mg/g. And also, high acids to precursor ratio and activation temperature of AC were synthesized from lignocellulosic biomass. Generally, the advantage of this review paper, gathers evidence from currently published articles deliberating chemical composition, proximate values, biomass activation methods, the elemental composition of lignocellulosic biomass, physio-chemical properties of different lignocellulosic materials AC synthesized using a phosphoric acid activation agent, and the usage of derived activated carbon through phosphoric acid activation for water disinfection, solute organic matter, energy storage, and heavy metal removal.
来自木质纤维素生物质的低成本可再生吸附剂活性炭,由于其在环境中易于产生废物处理问题,成为全球关注的焦点。物理和化学过程是生物质活性炭(AC)生产的主要程序。就能源性能、较低的碳化时间和温度而言,通过化学方法活化木质纤维素生物质对于活性炭的生产是相互关联的。在化学活化剂(H₃PO₄、H₂SO₄、ZnCl₂、FeCl₃、NaOH、KOH和K₂CO₃)中,H₃PO₄是从木质纤维素生物质合成活性炭过程中最常用的化学活化剂,因为它易于回收、对环境影响小且碳产率高。通过H₃PO₄从木质纤维素生物质制备的大多数活性炭的表面积在456.1 - 2806 m²/g之间变化,产率为26.1 - 85%,极限吸附容量为2.5 - 89.29 mg/g。此外,还从木质纤维素生物质合成了高酸与前驱体比例和活性炭活化温度。一般来说,这篇综述文章的优势在于,从当前发表的文章中收集证据,探讨化学成分、近似值、生物质活化方法、木质纤维素生物质的元素组成、使用磷酸活化剂合成的不同木质纤维素材料活性炭的物理化学性质,以及通过磷酸活化衍生的活性炭在水消毒、溶质有机物、能量存储和重金属去除方面的应用。