Choi Jin-Hyeok, Woo Jeong-Jae, Kim Il
School of Chemical Engineering, Pusan National University, Busandaehag-ro 63-2, Busan 46241, Republic of Korea.
Polymers (Basel). 2023 Jul 28;15(15):3209. doi: 10.3390/polym15153209.
Thermoplastic elastomers (TPEs) have attracted increasing attention for a wide variety of industrial and biomedical applications owing to their unique properties compared to those of traditional rubbers. To develop high-performance engineering TPEs and reduce the environmental pollution caused by plastic waste, α,ω-hydroxyl-terminated polycaprolactone (PCL) polyols with molecular weights of 1000-4200 g mol and polydispersity index (Ð) of 1.30-1.88 are synthesized via the ring-opening polymerization of sustainable ε-caprolactone using a heterogeneous double metal cyanide catalyst. The resulting PCL polyols are employed as soft segments to produce thermoplastic poly(ester ester) elastomers and are compared to conventional thermoplastic poly(ether ester) elastomers prepared from polytetramethylene ether glycol (PTMEG). Notably, the PCL-based TPEs exhibit superior mechanical properties and biodegradability compared to PTMEG-based TPEs owing to their crystallinity and microphase separation behaviors. Accordingly, they have 39.7 MPa ultimate strength and 47.6% biodegradability, which are much higher than those of PTMEG-based TPEs (23.4 MPa ultimate strength and 24.3% biodegradability). The introduction of biodegradable PCLs demonstrates significant potential for producing biodegradable TPEs with better properties than polyether-derived elastomers.
热塑性弹性体(TPEs)因其与传统橡胶相比具有独特性能,在各种工业和生物医学应用中受到越来越多的关注。为了开发高性能工程热塑性弹性体并减少塑料垃圾造成的环境污染,使用非均相双金属氰化物催化剂通过可持续的ε-己内酯开环聚合反应合成了分子量为1000 - 4200 g/mol且多分散指数(Ð)为1.30 - 1.88的α,ω-羟基封端的聚己内酯(PCL)多元醇。所得的PCL多元醇用作软段来制备热塑性聚(酯-酯)弹性体,并与由聚四亚甲基醚二醇(PTMEG)制备的传统热塑性聚(醚-酯)弹性体进行比较。值得注意的是,基于PCL的热塑性弹性体由于其结晶性和微相分离行为,与基于PTMEG的热塑性弹性体相比表现出优异的机械性能和生物降解性。因此,它们具有39.7 MPa的极限强度和47.6%的生物降解性,远高于基于PTMEG的热塑性弹性体(23.4 MPa极限强度和24.3%生物降解性)。可生物降解PCL的引入显示出生产具有比聚醚衍生弹性体更好性能的可生物降解热塑性弹性体的巨大潜力。