Yang Tao, Xu Fang, Zhao Shoujun, Li Tongtong, Yang Zelin, Wang Yanbo, Liu Yuwang
State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China.
Sensors (Basel). 2023 Jul 26;23(15):6679. doi: 10.3390/s23156679.
This paper introduces a novel high-certainty visual servo algorithm for a space manipulator with flexible joints, which consists of a kinematic motion planner and a Lyapunov dynamics model reference adaptive controller. To enhance kinematic certainty, a three-stage motion planner is proposed in Cartesian space to control the intermediate states and minimize the relative position error between the manipulator and the target. Moreover, a planner in joint space based on the fast gradient descent algorithm is proposed to optimize the joint's deviation from the centrality. To improve dynamic certainty, an adaptive control algorithm based on Lyapunov stability analysis is used to enhance the system's anti-disturbance capability. As to the basic PBVS (position-based visual servo methods) algorithm, the proposed method aims to increase the certainty of the intermediate states to avoid collision. A physical experiment is designed to validate the effectiveness of the algorithm. The experiment shows that the visual servo motion state in Cartesian space is basically consistent with the planned three-stage motion state, the average joint deviation index from the centrality is less than 40%, and the motion trajectory consistency exceeds 90% under different inertial load disturbances. Overall, this method reduces the risk of collision by enhancing the certainty of the basic PBVS algorithm.
本文介绍了一种用于具有柔性关节的空间机械手的新型高确定性视觉伺服算法,该算法由运动学运动规划器和李雅普诺夫动力学模型参考自适应控制器组成。为提高运动学确定性,在笛卡尔空间中提出了一种三阶段运动规划器,用于控制中间状态并最小化机械手与目标之间的相对位置误差。此外,还提出了一种基于快速梯度下降算法的关节空间规划器,以优化关节相对于中心位置的偏差。为提高动力学确定性,采用基于李雅普诺夫稳定性分析的自适应控制算法来增强系统的抗干扰能力。相对于基本的基于位置的视觉伺服(PBVS)算法,该方法旨在提高中间状态的确定性以避免碰撞。设计了物理实验来验证算法的有效性。实验表明,笛卡尔空间中的视觉伺服运动状态与规划的三阶段运动状态基本一致,在不同惯性负载干扰下,关节相对于中心位置的平均偏差指数小于40%,运动轨迹一致性超过90%。总体而言,该方法通过提高基本PBVS算法的确定性降低了碰撞风险。