Suppr超能文献

通过基于深度学习的故障检测提高酒店建筑中风机盘管机组的效率

Improving the Efficiency of Fan Coil Units in Hotel Buildings through Deep-Learning-Based Fault Detection.

作者信息

Matetić Iva, Štajduhar Ivan, Wolf Igor, Ljubic Sandi

机构信息

Faculty of Engineering, University of Rijeka, Vukovarska 58, HR-51000 Rijeka, Croatia.

Center for Artificial Intelligence and Cybersecurity, University of Rijeka, R. Matejcic 2, HR-51000 Rijeka, Croatia.

出版信息

Sensors (Basel). 2023 Jul 27;23(15):6717. doi: 10.3390/s23156717.

Abstract

Optimizing the performance of heating, ventilation, and air-conditioning (HVAC) systems is critical in today's energy-conscious world. Fan coil units (FCUs) play a critical role in providing comfort in various environments as an important component of HVAC systems. However, FCUs often experience failures that affect their efficiency and increase their energy consumption. In this context, deep learning (DL)-based fault detection offers a promising solution. By detecting faults early and preventing system failures, the efficiency of FCUs can be improved. This paper explores DL models as fault detectors for FCUs to enable smarter and more energy-efficient hotel buildings. We tested three contemporary DL modeling approaches: convolutional neural network (CNN), long short-term memory network (LSTM), and a combination of CNN and gated recurrent unit (GRU). The random forest model (RF) was additionally developed as a baseline benchmark. The fault detectors were tested on a real-world dataset obtained from the sensory measurement system installed in a hotel and additionally supplemented with simulated data via a physical model developed in TRNSYS. Three representative FCU faults, namely, a stuck valve, a reduction in airflow, and an FCU outage, were simulated with a much larger dataset than is typically utilized in similar studies. The results showed that the hybrid model, integrating CNN and GRU, performed best for all three observed faults. DL-based fault detectors outperformed the baseline RF model, confirming these solutions as viable components for energy-efficient hotels.

摘要

在当今注重能源的世界中,优化供暖、通风和空调(HVAC)系统的性能至关重要。风机盘管机组(FCU)作为HVAC系统的重要组成部分,在为各种环境提供舒适方面发挥着关键作用。然而,FCU经常出现故障,影响其效率并增加能耗。在此背景下,基于深度学习(DL)的故障检测提供了一个有前景的解决方案。通过早期检测故障并防止系统故障,可以提高FCU的效率。本文探讨将DL模型用作FCU的故障检测器,以实现更智能、更节能的酒店建筑。我们测试了三种当代DL建模方法:卷积神经网络(CNN)、长短期记忆网络(LSTM)以及CNN与门控循环单元(GRU)的组合。此外,还开发了随机森林模型(RF)作为基线基准。这些故障检测器在从一家酒店安装的传感测量系统获得的真实数据集上进行测试,并通过在TRNSYS中开发的物理模型额外补充模拟数据。模拟了三种具有代表性的FCU故障,即阀门卡住、气流减少和FCU停机,所使用的数据集比类似研究中通常使用的数据集大得多。结果表明,集成CNN和GRU的混合模型在所有三种观察到的故障中表现最佳。基于DL的故障检测器优于基线RF模型,证实了这些解决方案是节能酒店的可行组件。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e67f/10422498/537de57ad5dc/sensors-23-06717-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验