Suppr超能文献

基于自动参数调整和深度学习滤波器的轮廓检测在建筑工地焊接火花检测中的应用

Welding Spark Detection on Construction Sites Using Contour Detection with Automatic Parameter Tuning and Deep-Learning-Based Filters.

作者信息

Jin Xi, Ahn Changbum Ryan, Kim Jinwoo, Park Moonseo

机构信息

Department of Architecture and Architectural Engineering, Seoul National University, Seoul 08826, Republic of Korea.

Department of Architectural Engineering, Gachon University, Seongnam-si 13120, Republic of Korea.

出版信息

Sensors (Basel). 2023 Jul 31;23(15):6826. doi: 10.3390/s23156826.

Abstract

One of the primary causes of fires at construction sites is welding sparks. Fire detection systems utilizing computer vision technology offer a unique opportunity to monitor fires in construction sites. However, little effort has been made to date in regard to real-time tracking of small sparks that can lead to major fires at construction sites. In this study, a novel method is proposed to detect welding sparks in real-time contour detection with deep learning parameter tuning. An automatic parameter tuning algorithm employing a convolutional neural network was developed to identify the optimum hue saturation value. Additional filtering methods regarding the non-welding zone and a contour area-based filter were also newly developed to enhance the accuracy of welding spark prediction. The method was evaluated using 230 welding spark images and 104 videos. The results obtained from the welding images indicate that the suggested model for detecting welding sparks achieves a precision of 74.45% and a recall of 63.50% when noise images, such as flashing and reflection light, were removed from the dataset. Furthermore, our findings demonstrate that the proposed model is effective in capturing the number of welding sparks in the video dataset, with a 95.2% accuracy in detecting the moment when the number of welding sparks reaches its peak. These results highlight the potential of automated welding spark detection to enhance fire surveillance at construction sites.

摘要

建筑工地火灾的主要原因之一是焊接火花。利用计算机视觉技术的火灾探测系统为监测建筑工地火灾提供了独特的机会。然而,迄今为止,在实时跟踪可能导致建筑工地重大火灾的小火花方面所做的工作很少。在本研究中,提出了一种通过深度学习参数调整进行实时轮廓检测来检测焊接火花的新方法。开发了一种采用卷积神经网络的自动参数调整算法来识别最佳色调饱和度值。还新开发了关于非焊接区域的附加滤波方法和基于轮廓面积的滤波器,以提高焊接火花预测的准确性。使用230张焊接火花图像和104个视频对该方法进行了评估。从焊接图像获得的结果表明,当从数据集中去除诸如闪光和反射光等噪声图像时,所建议的焊接火花检测模型的精度达到74.45%,召回率达到63.50%。此外,我们的研究结果表明,所提出的模型在捕获视频数据集中焊接火花数量方面是有效的,在检测焊接火花数量达到峰值的时刻时,准确率为95.2%。这些结果突出了自动焊接火花检测在加强建筑工地火灾监测方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4f4/10422306/0d04848991b8/sensors-23-06826-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验