Suppr超能文献

通过声发射信号分类预测防护涂层脱粘的失效严重程度

Failure Severity Prediction for Protective-Coating Disbondment via the Classification of Acoustic Emission Signals.

作者信息

Rahman Noor A'in A, May Zazilah, Jaffari Rabeea, Hanif Mehwish

机构信息

Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia.

High Performance Cloud Computing Centre, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia.

出版信息

Sensors (Basel). 2023 Jul 31;23(15):6833. doi: 10.3390/s23156833.

Abstract

Structural health monitoring is a popular inspection method that utilizes acoustic emission (AE) signals for fault detection in engineering infrastructures. Diagnosis based on the propagation of AE signals along any surface material offers an attractive solution for fault identification. However, the classification of AE signals originating from failure events, especially coating failure (coating disbondment), is a challenging task given the AE signature of each material. Thus, different experimental settings and analyses of AE signals are required to classify the various types of coating failures, and they are time-consuming and expensive. Hence, to address these issues, we utilized machine learning (ML) classification models in this work to evaluate epoxy-based-protective-coating disbondment based on the AE principle. A coating disbondment experiment consisting of coated carbon steel test panels for the collection of AE signals was implemented. The obtained AE signals were then processed to construct the final dataset to train various state-of-the-art ML classification models to divide the failure severity of coating disbondment into three classes. Consequently, methods for the extraction of useful features, the handling of data imbalance, and a reduction in the bias of ML models were also effectively utilized in this study. Evaluations of state-of-the-art ML classification models on the AE signal dataset in terms of standard metrics revealed that the decision forest classification model outperformed the other state-of-the-art models, with accuracy, precision, recall, and F1 score values of 99.48%, 98.76%, 97.58%, and 98.17%, respectively. These results demonstrate the effectiveness of utilizing ML classification models for the failure severity prediction of protective-coating defects via AE signals.

摘要

结构健康监测是一种流行的检测方法,它利用声发射(AE)信号来检测工程基础设施中的故障。基于AE信号在任何表面材料上的传播进行诊断,为故障识别提供了一种有吸引力的解决方案。然而,鉴于每种材料的AE特征,对源自失效事件(尤其是涂层失效,即涂层脱粘)的AE信号进行分类是一项具有挑战性的任务。因此,需要不同的实验设置和AE信号分析来对各种类型的涂层失效进行分类,而这些操作既耗时又昂贵。因此,为了解决这些问题,我们在这项工作中利用机器学习(ML)分类模型,基于AE原理评估环氧基防护涂层的脱粘情况。实施了一个涂层脱粘实验,该实验由用于收集AE信号的涂覆碳钢测试面板组成。然后对获得的AE信号进行处理,以构建最终数据集,用于训练各种先进的ML分类模型,将涂层脱粘的失效严重程度分为三类。因此,本研究还有效地利用了提取有用特征、处理数据不平衡以及减少ML模型偏差的方法。根据标准指标对AE信号数据集上的先进ML分类模型进行评估,结果表明决策森林分类模型优于其他先进模型,其准确率、精确率、召回率和F1分数分别为99.48%、98.76%、97.58%和98.17%。这些结果证明了利用ML分类模型通过AE信号预测防护涂层缺陷失效严重程度的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2909/10422202/84583eaf2512/sensors-23-06833-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验