Wong Guan Sheng, Goh Kah Ong Michael, Tee Connie, Md Sabri Aznul Qalid
Faculty of Information Science and Technology, Multimedia University, Melaka 75450, Malaysia.
Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur 50603, Malaysia.
Sensors (Basel). 2023 Aug 2;23(15):6869. doi: 10.3390/s23156869.
Autonomous vehicles are gaining popularity, and the development of automatic parking systems is a fundamental requirement. Detecting the parking slots accurately is the first step towards achieving an automatic parking system. However, modern parking slots present various challenges for detection task due to their different shapes, colors, functionalities, and the influence of factors like lighting and obstacles. In this comprehensive review paper, we explore the realm of vision-based deep learning methods for parking slot detection. We categorize these methods into four main categories: object detection, image segmentation, regression, and graph neural network, and provide detailed explanations and insights into the unique features and strengths of each category. Additionally, we analyze the performance of these methods using three widely used datasets: the Tongji Parking-slot Dataset 2.0 (ps 2.0), Sejong National University (SNU) dataset, and panoramic surround view (PSV) dataset, which have played a crucial role in assessing advancements in parking slot detection. Finally, we summarize the findings of each method and outline future research directions in this field.
自动驾驶汽车越来越受欢迎,自动泊车系统的开发是一项基本要求。准确检测停车位是实现自动泊车系统的第一步。然而,现代停车位因其形状、颜色、功能以及照明和障碍物等因素的影响,给检测任务带来了各种挑战。在这篇综合性综述论文中,我们探索用于停车位检测的基于视觉的深度学习方法领域。我们将这些方法分为四大类:目标检测、图像分割、回归和图神经网络,并对每一类的独特特征和优势进行详细解释和深入分析。此外,我们使用三个广泛使用的数据集分析这些方法的性能:同济大学停车位数据集2.0(ps 2.0)、世宗国立大学(SNU)数据集和全景环视(PSV)数据集,这些数据集在评估停车位检测的进展方面发挥了关键作用。最后,我们总结了每种方法的研究结果,并概述了该领域未来的研究方向。