Akamatsu Yusuke, Maeda Keisuke, Ogawa Takahiro, Haseyama Miki
Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan.
Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan.
Sensors (Basel). 2023 Aug 3;23(15):6903. doi: 10.3390/s23156903.
Zero-shot neural decoding aims to decode image categories, which were not previously trained, from functional magnetic resonance imaging (fMRI) activity evoked when a person views images. However, having insufficient training data due to the difficulty in collecting fMRI data causes poor generalization capability. Thus, models suffer from the projection domain shift problem when novel target categories are decoded. In this paper, we propose a zero-shot neural decoding approach with semi-supervised multi-view embedding. We introduce the semi-supervised approach that utilizes additional images related to the target categories without fMRI activity patterns. Furthermore, we project fMRI activity patterns into a multi-view embedding space, i.e., visual and semantic feature spaces of viewed images to effectively exploit the complementary information. We define several source and target groups whose image categories are very different and verify the zero-shot neural decoding performance. The experimental results demonstrate that the proposed approach rectifies the projection domain shift problem and outperforms existing methods.
零样本神经解码旨在从人观看图像时诱发的功能磁共振成像(fMRI)活动中解码先前未训练过的图像类别。然而,由于收集fMRI数据存在困难,训练数据不足导致泛化能力较差。因此,当对新的目标类别进行解码时,模型会受到投影域偏移问题的困扰。在本文中,我们提出了一种具有半监督多视图嵌入的零样本神经解码方法。我们引入了半监督方法,该方法利用与目标类别相关的额外图像,而无需fMRI活动模式。此外,我们将fMRI活动模式投影到多视图嵌入空间,即所观看图像的视觉和语义特征空间,以有效利用互补信息。我们定义了几个图像类别差异很大的源组和目标组,并验证了零样本神经解码性能。实验结果表明,所提出的方法纠正了投影域偏移问题,并且优于现有方法。