Suppr超能文献

物联网环境下智能信息物理系统中嵌入式多层感知器人工神经网络的性能分析

Performance Analysis of Embedded Multilayer Perceptron Artificial Neural Networks on Smart Cyber-Physical Systems for IoT Environments.

作者信息

Torres-Hernández Mayra A, Escobedo-Barajas Miguel H, Guerrero-Osuna Héctor A, Ibarra-Pérez Teodoro, Solís-Sánchez Luis O, Martínez-Blanco Ma Del R

机构信息

Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Zacatecas, Calle Circuito Cerro del Gato No. 202, Col. Ciudad Administrativa, Zacatecas 98160, Mexico.

Programa de Doctorado en Ingeniería y Tecnología Aplicada, Universidad Autónoma de Zacatecas, Av. Ramón López Velarde No. 801, Col. Centro, Zacatecas 98000, Mexico.

出版信息

Sensors (Basel). 2023 Aug 4;23(15):6935. doi: 10.3390/s23156935.

Abstract

At present, modern society is experiencing a significant transformation. Thanks to the digitization of society and manufacturing, mainly because of a combination of technologies, such as the Internet of Things, cloud computing, machine learning, smart cyber-physical systems, etc., which are making the smart factory and Industry 4.0 a reality. Currently, most of the intelligence of smart cyber-physical systems is implemented in software. For this reason, in this work, we focused on the artificial intelligence software design of this technology, one of the most complex and critical. This research aimed to study and compare the performance of a multilayer perceptron artificial neural network designed for solving the problem of character recognition in three implementation technologies: personal computers, cloud computing environments, and smart cyber-physical systems. After training and testing the multilayer perceptron, training time and accuracy tests showed each technology has particular characteristics and performance. Nevertheless, the three technologies have a similar performance of 97% accuracy, despite a difference in the training time. The results show that the artificial intelligence embedded in fog technology is a promising alternative for developing smart cyber-physical systems.

摘要

目前,现代社会正在经历重大变革。得益于社会和制造业的数字化,主要是由于物联网、云计算、机器学习、智能网络物理系统等多种技术的结合,智能工厂和工业4.0正在成为现实。目前,智能网络物理系统的大部分智能是在软件中实现的。因此,在这项工作中,我们专注于这项技术中最复杂、最关键的人工智能软件设计。本研究旨在研究和比较为解决字符识别问题而设计的多层感知器人工神经网络在三种实现技术中的性能:个人计算机、云计算环境和智能网络物理系统。在对多层感知器进行训练和测试后,训练时间和准确率测试表明每种技术都有其独特的特点和性能。尽管如此,尽管训练时间有所不同,但这三种技术的准确率都达到了97%,性能相似。结果表明,嵌入雾技术的人工智能是开发智能网络物理系统的一个有前途的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2af8/10422198/2b42b937e63f/sensors-23-06935-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验