Suppr超能文献

几何深度学习:工业 4.0 信息物理复杂网络中的深度学习。

Geometric Deep Lean Learning: Deep Learning in Industry 4.0 Cyber-Physical Complex Networks.

机构信息

Fakultaet fuer Management und Vertrieb, Campus Schwäbisch-Hall, Hochschule Heilbronn, 74523 Schwäbisch-Hall, Germany.

Department of Artificial Intelligence, Universidad Politécnica de Madrid, Campus de Montegancedo, 28660 Boadilla del Monte, Madrid, Spain.

出版信息

Sensors (Basel). 2020 Jan 30;20(3):763. doi: 10.3390/s20030763.

Abstract

In the near future, value streams associated with Industry 4.0 will be formed by interconnected cyber-physical elements forming complex networks that generate huge amounts of data in real time. The success or failure of industry leaders interested in the continuous improvement of lean management systems in this context is determined by their ability to recognize behavioral patterns in these big data structured within non-Euclidean domains, such as these dynamic sociotechnical complex networks. We assume that artificial intelligence in general and deep learning in particular may be able to help find useful patterns of behavior in 4.0 industrial environments in the lean management of cyber-physical systems. However, although these technologies have meant a paradigm shift in the resolution of complex problems in the past, the traditional methods of deep learning, focused on image or video analysis, both with regular structures, are not able to help in this specific field. This is why this work focuses on proposing geometric deep lean learning, a mathematical methodology that describes deep-lean-learning operations such as convolution and pooling on cyber-physical Industry 4.0 graphs. Geometric deep lean learning is expected to positively support sustainable organizational growth because customers and suppliers ought to be able to reach new levels of transparency and traceability on the quality and efficiency of processes that generate new business for both, hence generating new products, services, and cooperation opportunities in a cyber-physical environment.

摘要

在不久的将来,与工业 4.0 相关的价值流将由相互连接的网络物理元素形成复杂网络,这些网络实时生成大量数据。在这种背景下,对精益管理系统持续改进感兴趣的行业领导者的成功或失败取决于他们识别非欧几里得域内这些大数据结构中行为模式的能力,例如这些动态社会技术复杂网络。我们假设人工智能,特别是深度学习,可能有助于在 4.0 工业环境中的网络物理系统精益管理中找到有用的行为模式。然而,尽管这些技术在过去解决复杂问题方面意味着范式转变,但专注于图像或视频分析的深度学习的传统方法,都无法在这一特定领域提供帮助。这就是为什么这项工作专注于提出几何深度学习,这是一种数学方法,用于描述网络物理工业 4.0 图上的深度学习操作,例如卷积和池化。预计几何深度学习将积极支持可持续的组织增长,因为客户和供应商应该能够在为双方创造新业务的流程的质量和效率方面达到新的透明度和可追溯性水平,从而在网络物理环境中创造新产品、服务和合作机会。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd5e/7038400/7f0d90f4c185/sensors-20-00763-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验