Suppr超能文献

基于嵌套阵列的相干宽带源到达角估计

Direction of Arrival Estimation of Coherent Wideband Sources Using Nested Array.

作者信息

Tang Yawei, Deng Weiming, Li Jianfeng, Zhang Xiaofei

机构信息

College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China.

出版信息

Sensors (Basel). 2023 Aug 6;23(15):6984. doi: 10.3390/s23156984.

Abstract

Due to their ability to achieve higher DOA estimation accuracy and larger degrees of freedom (DOF) using a fixed number of antennas, sparse arrays, etc., nested and coprime arrays have attracted a lot of attention in relation to research into direction of arrival (DOA) estimation. However, the usage of the sparse array is based on the assumption that the signals are independent of each other, which is hard to guarantee in practice due to the complex propagation environment. To address the challenge of sparse arrays struggling to handle coherent wideband signals, we propose the following method. Firstly, we exploit the coherent signal subspace method (CSSM) to focus the wideband signals on the reference frequency and assist in the decorrelation process, which can be implemented without any pre-estimations. Then, we virtualize the covariance matrix of sparse array due to the decorrelation operation. Next, an enhanced spatial smoothing algorithm is applied to make full use of the information available in the data covariance matrix, as well as to improve the decorrelation effect, after which stage the multiple signal classification (MUSIC) algorithm is used to obtain DOA estimations. In the simulation, with reference to the root mean square error (RMSE) that varies in tandem with the signal-to-noise ratio (SNR), the algorithm achieves satisfactory results compared to other state-of-the-art algorithms, including sparse arrays using the traditional incoherent signal subspace method (ISSM), the coherent signal subspace method (CSSM), spatial smoothing algorithms, etc. Furthermore, the proposed method is also validated via real data tests, and the error value is only 0.2 degrees in real data tests, which is lower than those of the other methods in real data tests.

摘要

由于能够使用固定数量的天线、稀疏阵列等实现更高的到达方向(DOA)估计精度和更大的自由度(DOF),嵌套阵列和互质阵列在到达方向(DOA)估计研究方面引起了广泛关注。然而,稀疏阵列的使用基于信号相互独立的假设,由于实际传播环境复杂,这在实践中很难保证。为应对稀疏阵列难以处理相干宽带信号这一挑战,我们提出以下方法。首先,我们利用相干信号子空间方法(CSSM)将宽带信号聚焦到参考频率并辅助去相关过程,这可以在无需任何预估计的情况下实现。然后,由于去相关操作,我们对稀疏阵列的协方差矩阵进行虚拟化。接下来,应用增强的空间平滑算法以充分利用数据协方差矩阵中的可用信息,并改善去相关效果,在此阶段之后使用多重信号分类(MUSIC)算法来获得DOA估计。在仿真中,参考与信噪比(SNR)同步变化的均方根误差(RMSE),与其他现有算法相比,该算法取得了令人满意的结果,这些现有算法包括使用传统非相干信号子空间方法(ISSM)的稀疏阵列、相干信号子空间方法(CSSM)、空间平滑算法等。此外,所提出的方法也通过实际数据测试得到了验证,在实际数据测试中误差值仅为0.2度,低于实际数据测试中其他方法的误差值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd39/10422516/40b0e2b2ad7c/sensors-23-06984-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验