Suppr超能文献

与机器赛跑:数据分析技术与种族化健康不公正的制度铭刻

Racing the Machine: Data Analytic Technologies and Institutional Inscription of Racialized Health Injustice.

作者信息

Cruz Taylor Marion

机构信息

California State University, Fullerton, CA, USA.

出版信息

J Health Soc Behav. 2024 Mar;65(1):110-125. doi: 10.1177/00221465231190061. Epub 2023 Aug 12.

Abstract

Recent scientific and policy initiatives frame clinical settings as sites for intervening upon inequality. Electronic health records and data analytic technologies offer opportunity to record standard data on education, employment, social support, and race-ethnicity, and numerous audiences expect biomedicine to redress social determinants based on newly available data. However, little is known on how health practitioners and institutional actors view data standardization in relation to inequity. This article examines a public safety-net health system's expansion of race, ethnicity, and language data collection, drawing on 10 months of ethnographic fieldwork and 32 qualitative interviews with providers, clinic staff, data scientists, and administrators. Findings suggest that electronic data capture institutes a decontextualized racialization within biomedicine as health practitioners and data workers rely on biological, cultural, and social justifications for collecting racial data. This demonstrates a critical paradox of stratified biomedicalization: The same data-centered interventions expected to redress injustice may ultimately reinscribe it.

摘要

最近的科学和政策倡议将临床环境视为干预不平等现象的场所。电子健康记录和数据分析技术提供了记录有关教育、就业、社会支持和种族/族裔等标准数据的机会,众多受众期望生物医学根据新获取的数据纠正社会决定因素。然而,对于医疗从业者和机构行为者如何看待与不平等相关的数据标准化,我们知之甚少。本文利用为期10个月的人种志实地调查以及对医疗服务提供者、诊所工作人员、数据科学家和管理人员进行的32次定性访谈,研究了一个公共安全网医疗系统在种族、族裔和语言数据收集方面的扩展情况。研究结果表明,由于医疗从业者和数据工作者在收集种族数据时依赖生物学、文化和社会方面的理由,电子数据采集在生物医学领域引入了一种脱离背景的种族化现象。这体现了分层生物医学化的一个关键悖论:预期能够纠正不公正现象的以数据为中心的干预措施,最终可能会再次强化这种不公正。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验