Department of Biochemistry, Emory University, Atlanta, Georgia, USA.
Department of Genome Biology, Centre for Genomic Regulation, Barcelona, Spain.
Protein Sci. 2023 Oct;32(10):e4754. doi: 10.1002/pro.4754.
Nuclear receptors (NRs) are transcription factors that regulate essential biological processes in response to cognate ligands. An important part of NR function involves ligand-induced conformational changes that recruit coregulator proteins to the activation function surface (AFS), ~15 Å away from the ligand-binding pocket. Ligands must communicate with the AFS to recruit appropriate coregulators and elicit different transcriptional outcomes, but this communication is poorly understood. These studies illuminate allosteric communication networks underlying activation of liver receptor homolog-1 (LRH-1), a NR that regulates development, metabolism, cancer progression, and intestinal inflammation. Using >100 μs of all-atom molecular dynamics simulations involving 74 LRH-1 complexes, we identify distinct signaling circuits used by active and inactive ligands for AFS communication. Inactive ligands communicate via strong, coordinated motions along paths through the receptor to the AFS. Activating ligands disrupt the "inactive" circuit and induce connectivity with a second allosteric site. Ligand-contacting residues in helix 7 help mediate the switch between circuits, suggesting new avenues for developing LRH-1-targeted therapeutics. We also elucidate aspects of coregulator signaling, showing that localized, destabilizing fluctuations are induced by inappropriate ligand-coregulator pairings. These studies have uncovered novel features of LRH-1 allostery, and the quantitative approach used to analyze many simulations provides a framework to study allosteric signaling in other receptors.
核受体 (NRs) 是转录因子,可响应同源配体调节重要的生物学过程。NR 功能的一个重要部分涉及配体诱导的构象变化,该变化将共激活蛋白募集到激活功能表面 (AFS),距离配体结合口袋约 15Å。配体必须与 AFS 进行通讯以招募适当的共激活蛋白并引起不同的转录结果,但这种通讯机制尚不清楚。这些研究阐明了肝脏受体同源物-1 (LRH-1) 激活的变构通讯网络,LRH-1 是一种调节发育、代谢、癌症进展和肠道炎症的 NR。使用涉及 74 个 LRH-1 复合物的 >100μs 全原子分子动力学模拟,我们确定了活性和非活性配体用于 AFS 通讯的不同信号通路。非活性配体通过沿着受体到 AFS 的路径进行强协调运动进行通讯。激活配体破坏“非活性”回路并诱导与第二个变构位点的连通性。螺旋 7 中的配体接触残基有助于在回路之间进行切换,这为开发 LRH-1 靶向治疗提供了新途径。我们还阐明了共激活蛋白信号的某些方面,表明不适当的配体-共激活蛋白配对会引起局部、不稳定的波动。这些研究揭示了 LRH-1 变构的新特征,并且用于分析许多模拟的定量方法为研究其他受体的变构信号提供了框架。