Suppr超能文献

人工智能赋能的细胞形态计量学风险评分改善了皮肤鳞状细胞癌的预后分层。

Artificial intelligence-empowered cellular morphometric risk score improves prognostic stratification of cutaneous squamous cell carcinoma.

机构信息

Instituto de Biología Molecular y Celular del Cáncer, Universidad de Salamanca/CSIC, Salamanca, Spain.

Instituto de Investigación Biomédica de Salamanca.

出版信息

Clin Exp Dermatol. 2024 Jun 25;49(7):692-698. doi: 10.1093/ced/llad264.

Abstract

BACKGROUND

Risk stratification of cutaneous squamous cell carcinoma (cSCC) is essential for managing patients.

OBJECTIVES

To determine if artificial intelligence and machine learning might help to stratify patients with cSCC by risk using more than solely clinical and histopathological factors.

METHODS

We retrieved a retrospective cohort of 104 patients whose cSCCs had been excised with clear margins. Clinical and histopathological risk factors were evaluated. Haematoxylin and eosin-stained slides were scanned and analysed by an algorithm based on the stacked predictive sparse decomposition technique. Cellular morphometric biomarkers (CMBs) were identified via machine learning and used to derive a cellular morphometric risk score (CMRS) that classified cSCCs into clusters of differential prognoses. Concordance analysis, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy were calculated and compared with results obtained with the Brigham and Women's Hospital (BWH) staging system. The performance of the combination of the BWH staging system and the CMBs was also analysed.

RESULTS

There were no differences among the CMRS groups in terms of clinical and histopathological risk factors and T-stage assignment, but there were significant differences in prognosis. Combining the CMRS with BWH staging systems increased distinctiveness and improved prognostic performance. C-indices were 0.91 local recurrence and 0.91 for nodal metastasis when combining the two approaches. The NPV was 94.41% and 96.00%, the PPV was 36.36% and 41.67%, and accuracy reached 86.75% and 89.16%, respectively, with the combined approach.

CONCLUSIONS

CMRS is helpful for cSCC risk stratification beyond classic clinical and histopathological risk features. Combining the information from the CMRS and the BWH staging system offers outstanding prognostic performance for patients with high-risk cSCC.

摘要

背景

皮肤鳞状细胞癌(cSCC)的风险分层对于患者的管理至关重要。

目的

确定人工智能和机器学习是否可以帮助通过风险分层来分层 cSCC 患者,而不仅仅是依靠临床和组织病理学因素。

方法

我们检索了 104 例接受 cSCC 根治性切除的患者的回顾性队列。评估了临床和组织病理学危险因素。苏木精和伊红染色切片通过基于堆叠预测稀疏分解技术的算法进行扫描和分析。通过机器学习确定细胞形态计量学生物标志物(CMBs),并用于得出细胞形态计量风险评分(CMRS),将 cSCC 分为不同预后的聚类。计算并比较了一致性分析、敏感性、特异性、阳性预测值(PPV)、阴性预测值(NPV)和准确性,并与 Brigham and Women's Hospital(BWH)分期系统的结果进行比较。还分析了 BWH 分期系统和 CMBs 组合的性能。

结果

CMRS 组在临床和组织病理学危险因素以及 T 分期方面没有差异,但预后存在显著差异。将 CMRS 与 BWH 分期系统相结合可提高特异性并改善预后性能。两种方法结合时局部复发的 C 指数为 0.91,淋巴结转移为 0.91。当结合两种方法时,NPV 为 94.41%和 96.00%,PPV 为 36.36%和 41.67%,准确性分别为 86.75%和 89.16%。

结论

CMRS 有助于对经典临床和组织病理学风险特征之外的 cSCC 风险进行分层。CMRS 和 BWH 分期系统的信息相结合可为高危 cSCC 患者提供出色的预后性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验