Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, Romania;
Rom J Morphol Embryol. 2024 Apr-Jun;65(2):243-250. doi: 10.47162/RJME.65.2.10.
INTRODUCTION: Histological grading of cutaneous squamous cell carcinoma (cSCC) is crucial for prognosis and treatment decisions, but manual grading is subjective and time-consuming. AIM: This study aimed to develop and validate a deep learning (DL)-based model for automated cSCC grading, potentially improving diagnostic accuracy (ACC) and efficiency. MATERIALS AND METHODS: Three deep neural networks (DNNs) with different architectures (AlexNet, GoogLeNet, ResNet-18) were trained using transfer learning on a dataset of 300 histopathological images of cSCC. The models were evaluated on their ACC, sensitivity (SN), specificity (SP), and area under the curve (AUC). Clinical validation was performed on 60 images, comparing the DNNs' predictions with those of a panel of pathologists. RESULTS: The models achieved high performance metrics (ACC>85%, SN>85%, SP>92%, AUC>97%) demonstrating their potential for objective and efficient cSCC grading. The high agreement between the DNNs and pathologists, as well as among different network architectures, further supports the reliability and ACC of the DL models. The top-performing models are publicly available, facilitating further research and potential clinical implementation. CONCLUSIONS: This study highlights the promising role of DL in enhancing cSCC diagnosis, ultimately improving patient care.
简介:皮肤鳞状细胞癌(cSCC)的组织学分级对预后和治疗决策至关重要,但手动分级具有主观性且耗时。
目的:本研究旨在开发和验证一种基于深度学习(DL)的自动 cSCC 分级模型,以提高诊断准确性(ACC)和效率。
材料和方法:使用 300 张 cSCC 组织病理学图像数据集,通过迁移学习训练了 3 种具有不同架构(AlexNet、GoogLeNet、ResNet-18)的深度神经网络(DNN)。评估模型的 ACC、敏感性(SN)、特异性(SP)和曲线下面积(AUC)。对 60 张图像进行临床验证,将 DNN 的预测结果与一组病理学家的预测结果进行比较。
结果:模型的性能指标较高(ACC>85%,SN>85%,SP>92%,AUC>97%),表明其具有客观、高效的 cSCC 分级潜力。DNN 与病理学家之间、不同网络架构之间的高度一致性进一步支持了 DL 模型的可靠性和 ACC。表现最佳的模型是公开的,这有利于进一步的研究和潜在的临床应用。
结论:本研究强调了 DL 在提高 cSCC 诊断中的有前景的作用,最终改善了患者的护理。
Rom J Morphol Embryol. 2024
Rom J Morphol Embryol. 2021
Arch Dermatol Res. 2024-6-27
Cochrane Database Syst Rev. 2018-12-4
Cancers (Basel). 2024-4-29
Diagn Pathol. 2023-10-3
Diagnostics (Basel). 2022-10-12