文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习和迁移学习的自动化皮肤鳞状细胞癌分级。

Automated cutaneous squamous cell carcinoma grading using deep learning with transfer learning.

机构信息

Department of Medical Informatics and Biostatistics, University of Medicine and Pharmacy of Craiova, Romania;

出版信息

Rom J Morphol Embryol. 2024 Apr-Jun;65(2):243-250. doi: 10.47162/RJME.65.2.10.


DOI:10.47162/RJME.65.2.10
PMID:39020538
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11384044/
Abstract

INTRODUCTION: Histological grading of cutaneous squamous cell carcinoma (cSCC) is crucial for prognosis and treatment decisions, but manual grading is subjective and time-consuming. AIM: This study aimed to develop and validate a deep learning (DL)-based model for automated cSCC grading, potentially improving diagnostic accuracy (ACC) and efficiency. MATERIALS AND METHODS: Three deep neural networks (DNNs) with different architectures (AlexNet, GoogLeNet, ResNet-18) were trained using transfer learning on a dataset of 300 histopathological images of cSCC. The models were evaluated on their ACC, sensitivity (SN), specificity (SP), and area under the curve (AUC). Clinical validation was performed on 60 images, comparing the DNNs' predictions with those of a panel of pathologists. RESULTS: The models achieved high performance metrics (ACC>85%, SN>85%, SP>92%, AUC>97%) demonstrating their potential for objective and efficient cSCC grading. The high agreement between the DNNs and pathologists, as well as among different network architectures, further supports the reliability and ACC of the DL models. The top-performing models are publicly available, facilitating further research and potential clinical implementation. CONCLUSIONS: This study highlights the promising role of DL in enhancing cSCC diagnosis, ultimately improving patient care.

摘要

简介:皮肤鳞状细胞癌(cSCC)的组织学分级对预后和治疗决策至关重要,但手动分级具有主观性且耗时。

目的:本研究旨在开发和验证一种基于深度学习(DL)的自动 cSCC 分级模型,以提高诊断准确性(ACC)和效率。

材料和方法:使用 300 张 cSCC 组织病理学图像数据集,通过迁移学习训练了 3 种具有不同架构(AlexNet、GoogLeNet、ResNet-18)的深度神经网络(DNN)。评估模型的 ACC、敏感性(SN)、特异性(SP)和曲线下面积(AUC)。对 60 张图像进行临床验证,将 DNN 的预测结果与一组病理学家的预测结果进行比较。

结果:模型的性能指标较高(ACC>85%,SN>85%,SP>92%,AUC>97%),表明其具有客观、高效的 cSCC 分级潜力。DNN 与病理学家之间、不同网络架构之间的高度一致性进一步支持了 DL 模型的可靠性和 ACC。表现最佳的模型是公开的,这有利于进一步的研究和潜在的临床应用。

结论:本研究强调了 DL 在提高 cSCC 诊断中的有前景的作用,最终改善了患者的护理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b074/11384044/99548b7958db/RJME-65-2-243-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b074/11384044/a2b9343d094f/RJME-65-2-243-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b074/11384044/99548b7958db/RJME-65-2-243-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b074/11384044/a2b9343d094f/RJME-65-2-243-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b074/11384044/99548b7958db/RJME-65-2-243-fig2.jpg

相似文献

[1]
Automated cutaneous squamous cell carcinoma grading using deep learning with transfer learning.

Rom J Morphol Embryol. 2024

[2]
Deep learning with transfer learning in pathology. Case study: classification of basal cell carcinoma.

Rom J Morphol Embryol. 2021

[3]
Grading differentiation in cutaneous squamous cell carcinoma: a review of the literature.

Arch Dermatol Res. 2024-6-27

[4]
Automated classification of cells into multiple classes in epithelial tissue of oral squamous cell carcinoma using transfer learning and convolutional neural network.

Neural Netw. 2020-5-7

[5]
Agreement of two pre-trained deep-learning neural networks built with transfer learning with six pathologists on 6000 patches of prostate cancer from Gleason2019 Challenge.

Rom J Morphol Embryol. 2020

[6]
Preoperative Prediction of Pancreatic Neuroendocrine Neoplasms Grading Based on Enhanced Computed Tomography Imaging: Validation of Deep Learning with a Convolutional Neural Network.

Neuroendocrinology. 2020

[7]
Deep learning-based grading of ductal carcinoma in situ in breast histopathology images.

Lab Invest. 2021-4

[8]
Exfoliative cytology for diagnosing basal cell carcinoma and other skin cancers in adults.

Cochrane Database Syst Rev. 2018-12-4

[9]
Automated Gleason grading of prostate cancer using transfer learning from general-purpose deep-learning networks.

Rom J Morphol Embryol. 2020

[10]
DETECTION OF ORAL SQUAMOUS CELL CARCINOMA USING PRE-TRAINED DEEP LEARNING MODELS.

Exp Oncol. 2024-10-9

引用本文的文献

[1]
Enhanced metastasis risk prediction in cutaneous squamous cell carcinoma using deep learning and computational histopathology.

NPJ Precis Oncol. 2025-9-2

[2]
Nuclear morphology explained through digital morphometry: differentiating nuclear features across the three histological grades in cutaneous squamous cell carcinoma.

Rom J Morphol Embryol. 2024

本文引用的文献

[1]
The Tumor Stroma of Squamous Cell Carcinoma: A Complex Environment That Fuels Cancer Progression.

Cancers (Basel). 2024-4-29

[2]
Global burden and prediction study of cutaneous squamous cell carcinoma from 1990 to 2030: A systematic analysis and comparison with China.

J Glob Health. 2024-5-3

[3]
Expression Analysis of Retinal G Protein-coupled Receptor and its Correlation with Regulation of the Balance between Proliferation and Aberrant Differentiation in Cutaneous Squamous Cell Carcinoma.

Acta Derm Venereol. 2024-1-26

[4]
Transformative Potential of AI in Healthcare: Definitions, Applications, and Navigating the Ethical Landscape and Public Perspectives.

Healthcare (Basel). 2024-1-5

[5]
Shifting landscape in skin cancer incidence: the rising tide of cutaneous squamous cell carcinoma and potential implications for prevention.

Br J Dermatol. 2024-3-15

[6]
A deep learning algorithm to detect cutaneous squamous cell carcinoma on frozen sections in Mohs micrographic surgery: A retrospective assessment.

Exp Dermatol. 2024-1

[7]
Artificial intelligence in diagnostic pathology.

Diagn Pathol. 2023-10-3

[8]
SkinNet-INIO: Multiclass Skin Lesion Localization and Classification Using Fusion-Assisted Deep Neural Networks and Improved Nature-Inspired Optimization Algorithm.

Diagnostics (Basel). 2023-9-6

[9]
Artificial intelligence-empowered cellular morphometric risk score improves prognostic stratification of cutaneous squamous cell carcinoma.

Clin Exp Dermatol. 2024-6-25

[10]
Automatic Malignant and Benign Skin Cancer Classification Using a Hybrid Deep Learning Approach.

Diagnostics (Basel). 2022-10-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索