Suppr超能文献

泛癌种临床平台,用于预测免疫疗法的疗效,并在早期临床试验中优先选择免疫肿瘤学联合治疗方案。

A pan-cancer clinical platform to predict immunotherapy outcomes and prioritize immuno-oncology combinations in early-phase trials.

机构信息

Department of Medical Oncology, Vall D'Hebron University Hospital, 08035 Barcelona, Spain; Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain; Division of Medical Oncology and Hematology, Department of Medicine, Princess Margaret Cancer Centre, University of Toronto, Toronto, ON M5G2C4, Canada; Departamento de Medicina, Universidad Autónoma de Barcelona (UAB), 08035 Barcelona, Spain.

Vall d'Hebron Institute of Oncology, 08035 Barcelona, Spain.

出版信息

Med. 2023 Oct 13;4(10):710-727.e5. doi: 10.1016/j.medj.2023.07.006. Epub 2023 Aug 11.

Abstract

BACKGROUND

Immunotherapy is effective, but current biomarkers for patient selection have proven modest sensitivity. Here, we developed VIGex, an optimized gene signature based on the expression level of 12 genes involved in immune response with RNA sequencing.

METHODS

We implemented VIGex using the nCounter platform (Nanostring) on a large clinical cohort encompassing 909 tumor samples across 45 tumor types. VIGex was developed as a continuous variable, with cutoffs selected to detect three main categories (hot, intermediate-cold and cold) based on the different inflammatory status of the tumor microenvironment.

FINDINGS

Hot tumors had the highest VIGex scores and exhibited an increased abundance of tumor-infiltrating lymphocytes as compared with the intermediate-cold and cold. VIGex scores varied depending on tumor origin and anatomic site of metastases, with liver metastases showing an immunosuppressive tumor microenvironment. The predictive power of VIGex-Hot was observed in a cohort of 98 refractory solid tumor from patients treated in early-phase immunotherapy trials and its clinical performance was confirmed through an extensive metanalysis across 13 clinically annotated gene expression datasets from 877 patients treated with immunotherapy agents. Last, we generated a pan-cancer biomarker platform that integrates VIGex categories with the expression levels of immunotherapy targets under development in early-phase clinical trials.

CONCLUSIONS

Our results support the clinical utility of VIGex as a tool to aid clinicians for patient selection and personalized immunotherapy interventions.

FUNDING

BBVA Foundation; 202-2021 Division of Medical Oncology and Hematology Fellowship award; Princess Margaret Cancer Center.

摘要

背景

免疫疗法有效,但目前用于患者选择的生物标志物的灵敏度有限。在这里,我们基于 RNA 测序,开发了一种优化的基因特征 VIGex,该基因特征基于与免疫反应相关的 12 个基因的表达水平。

方法

我们使用 nCounter 平台(Nanostring)在一个包含 45 种肿瘤类型的 909 个肿瘤样本的大型临床队列中实施了 VIGex。VIGex 被开发为一个连续变量,通过选择截断值来检测三个主要类别(热、中冷和冷),基于肿瘤微环境的不同炎症状态。

发现

热肿瘤具有最高的 VIGex 评分,与中冷和冷肿瘤相比,其肿瘤浸润淋巴细胞的丰度增加。VIGex 评分取决于肿瘤起源和转移部位的解剖位置,肝转移显示出免疫抑制的肿瘤微环境。在早期免疫治疗试验中接受治疗的 98 例难治性实体瘤患者的队列中观察到 VIGex-Hot 的预测能力,并通过对来自 877 例接受免疫治疗药物治疗的患者的 13 个具有临床注释的基因表达数据集进行广泛的荟萃分析,验证了其临床性能。最后,我们生成了一个泛癌生物标志物平台,该平台将 VIGex 类别与正在早期临床试验中开发的免疫治疗靶点的表达水平相结合。

结论

我们的研究结果支持 VIGex 作为一种辅助临床医生进行患者选择和个性化免疫治疗干预的工具的临床应用。

资助

BBVA 基金会;202-2021 年肿瘤内科和血液学奖学金奖;玛格丽特公主癌症中心。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验